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Abstract—The asset trading volume on blockchain-based ex-
changes (DEX) increased substantially since the advent of Au-
tomated Market Makers (AMM). Yet, AMMs and their forks
compete on the same blockchain, incurring unnecessary network
and block-space overhead, by attracting sandwich attackers
and arbitrage competitions. Moreover, conceptually speaking, a
blockchain is one database, and we find little reason to partition
this database into multiple competing exchanges, which then
necessarily require price synchronization through arbitrage.

This paper shows that DEX arbitrage and trade routing among
similar AMMs can be performed efficiently and atomically on-
chain within smart contracts. These insights lead us to create a
new AMM design, an Automated Arbitrage Market Maker, short
A2MM DEX. A2MM aims to unite multiple AMMs to reduce
overheads, costs and increase blockchain security. With respect to
Miner Extractable Value (MEV), A2MM serves as a decentralized
design for users to atomically collect MEV, mitigating the dangers
of centralized MEV relay services.

We show that A2MM offers essential security benefits. First,
A2MM strengthens the blockchain consensus security by mit-
igating the competitive exploitation of MEV, therefore reduc-
ing the risks of consensus forks. A2MM reduces the network
layer overhead of competitive transactions, improves network
propagation, leading to less stale blocks and better blockchain
security. Through trade routing, A2MM reduces the predatory
risks of sandwich attacks by taking advantage of the minimum
profitable victim input. A2MM also offers financial benefits
to traders. Failed swap transactions from competitive trading
occupy valuable block space, implying an upward pressure on
transaction fees. Our evaluations shows that A2MM frees up
32.8% block-space of AMM-related transactions. In expectation,
A2MM’s revenue allows to reduce swap fees by 90%.

We hope that our work engenders further innovation in the
space of efficient and censorship-resilient exchanges, which by
design democratizes MEV and let the people trade.

I. INTRODUCTION

Permissionless blockchains have portrayed their full strength
when mediating financial assets among parties within
censorship-resilient on-chain exchanges. One of the most
popular exchange models is the Automated Market Maker [35],
where a smart contract autonomously adjusts the price for
supply and demand upon incoming trading requests.

In a perfect world, different financial exchanges would
all offer the same price for the same asset at the same
time — i.e., the exchanges should be perfectly synchronized.
In reality, however, competing exchanges must necessarily
synchronize their asset prices. High-frequency arbitrage bots
are known to conduct transaction fee bidding contests, both
on the blockchain’s P2P network and on the consensus
layer [22], [52], [53]. Transaction fee bidding obstructs the

Fig. 1: A2MM design, which peers with two AMMs using their
liquidity pools. When A2MM receives a swap transaction for
a market with the assets X and Y, A2MM atomically performs
optimal routing and arbitrage among the considered AMM,
minimizing subsequent arbitrage transactions.

available bandwidth on the blockchain’s P2P network [22],
therefore hinders information propagation and hence negatively
influences blockchain security [31]. MEV was also shown to
incentivize miners to fork the chain. For example, a small
rational miner with only 5% hashrate, will fork the Ethereum
blockchain given an MEV opportunity yielding 4× the block
reward [52].

This paper proposes a new type of AMM design, so-called
Automated Arbitrage Market Maker, or A2MM, which by
design performs optimal trade routing and best-effort two-
point arbitrage (cf. Figure 1) among peered AMMs. A2MM
offers various security benefits for the underlying blockchain.
First, A2MM atomically extracts two-point arbitrage MEV
from the peered AMMs, which would otherwise deteriorate
the blockchain’s security [52]. Second, through swap routing,
A2MM reduces the risks of sandwich attacks due to the
minimum profitable victim input (MVI) [53]. Third, A2MM
deters competitive network layer bidding, freeing the available
blockchain network layer bandwidth, reducing the stale block
rate and ultimately strengthening blockchain security [30].

A2MM also offers financial benefits to its users. Routing
grants traders better asset prices, and arbitrage can yield positive
income. Contrary to centralized MEV relayer, which auctions
off MEV extraction1, A2MM is a decentralized and trustless
design allowing users to atomically benefit from MEV, while
mitigating its negative consequences. One drawback of A2MM

1e.g., https://github.com/flashbots/mev-relay-js
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is that the added smart contract logic necessarily increases the
transaction fees for swaps. Our evaluation of A2MM with two
AMMs (cf. Figure 1), however, shows that A2MM’s routing
and arbitrage in expectation allow to reduce transaction fees
by 90% compared to a standard AMM swap.

One Blockchain — One AMM

The AMM design space is without a doubt considerable
and multi-dimensional [51]. Related works have for example
explored the various implications of differing AMM pricing
formulas [3], [1], [25]. Orthogonal to the pricing formula design
space, we would like to propose an intuition of how multiple
AMMs on the same blockchain can be positively united.

Conceptually speaking, a blockchain is a distributed database,
where each blockchain node aims to maintain the same view
as the remaining network. If we compare a blockchain to a
centralized exchange, which must also maintain its proprietary
non-distributed database, then there is little reason to split
such a database into multiple competing partitions, which
necessarily require synchronization through price arbitrage. We
therefore observe the following: (i) multiple DEXes dilute the
financial liquidity in each DEX and result in less attractive
asset pricing. (ii) multiple DEXes must synchronize through
arbitrage, which causes overhead on the blockchain database
and the network layer. From a security and financial perspective,
it therefore appears to be strictly disadvantageous to deploy
multiple DEXes on the same blockchain.2 In this work, we take
the stance that a blockchain should ideally only operate one
AMM smart contract, to increase the financial efficiency, reduce
network layer and block-space overhead, and consequently
increase blockchain throughput as well as security.
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Fig. 2: Decision tree whether a swap would introduce overhead
in terms of the P2P network layer or block space.

We motivate our stance through an AMM swap decision tree
in Figure 2. The decision tree departs from a possible AMM
state where multiple exchanges on an identical blockchain have

2There may be social, competitive, and egocentric reasons for the deployment
of competing DEXes (e.g., to sell a token), which we, however, do not further
investigate in this work.

the same price for the same asset markets, i.e., the exchange
prices are levelled. Then, a user performs a swap on one of the
i AMM exchanges, which would necessarily depart the AMMs
state from their price equilibrium. Given optimal sandwich
attack parameters [53], we can determine whether the swap
can be attacked through a sandwich attack. If the swap is not
sandwichable, we find whether the AMMs can reach price
equilibrium through optimal asset routing. If routing alone
cannot level the prices on the different AMM markets, we can
resort to arbitrage. If arbitrage can be performed atomically
within the swap, we do not anticipate further overhead from the
incoming swap, hence securing the blockchain from possible
MEV extraction. In all other cases, there exist the likely
introduction of overhead deteriorating the blockchain security,
reducing its throughput and increasing transaction fees.

We summarize our main contributions in the following.
A2MM Design: We provide a new AMM design, A2MM,

which atomically performs optimal swap routing as well
as efficient arbitrage among existing AMM liquidity pools,
if deemed profitable by the A2MM smart contract. Our
design does not change the simple usability aspects of
existing AMMs, yet allows any user to profit from atomic
routing and arbitrage.

A2MM Strengthens Blockchain Security: MEV is a design
problem threatening blockchain security [46], [52]. A2MM
mitigates two MEV sources, namely two-point arbitrages
and sandwich attacks. We show that adopting an A2MM
design reduces both block-space and network layer over-
head caused by MEV bots, therefore, strengthening the
blockchain consensus by reducing the stale block rate. We
find that 88.80% of the back-running arbitrage transactions
are accompanied by what we call back-run flooding (BRF),
an observed denial of service practice on the blockchain
P2P layer.

Evaluation: We implement and evaluate A2MM as shown
in Figure 1, while synchronizing with two AMMs (i.e.,
Uni- and Sushiswap). By replaying past blockchain data,
through routing and arbitrage revenue, on average, we
find that A2MM reduces the consumed transaction fees of
a standard AMM swap by 90%. Moreover, in expectation,
A2MM reduces the consumed block-space by 32.8%.

The remainder of the paper is organized as follows. Section II
provides a background, while Section III introduces our system
and threat model and outlines the A2MM design. Section IV
presents our evaluation and empirical results. We highlight
A2MM’s security implications in Section V and shed light
on the cost when A2MM peers with more than two AMMs
in Section VI. We summarize related works in Section VII,
provide a discussion in Section VIII and conclude the paper
in Section IX.

II. DECENTRALIZED FINANCE (DEFI)

Since the inception of permissionless blockchains with
Bitcoin in 2008 [45], it became apparent that their most well-
suited use case is the transfer or trade of financial assets
without trusted intermediaries [50]. A blockchain is considered
permissionless when entities can join and leave the network at
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any point in time. Users authorize transactions through a public
key signature and a subsequent broadcast on the blockchain
P2P network. The formatted public key corresponds to an
address that a user can receive assets at. Miners accumulate
transactions and solve a proof of work (PoW) puzzle to append
a block to the blockchain (various alternatives to PoW emerged,
such as PoS [48], [12]). Miners are financially rewarded for
performing work for the network through block rewards and
transaction fees. A third miner reward source, which is gaining
traction [46], is the extraction of Miner Extractable Value.
While Bitcoin supports basic smart contracts through a stack-
based programming language, the support for loops and higher-
level languages (such as Solidity) have gained widespread
adoption. For a more thorough blockchain background, we
refer the reader to several helpful SoKs [18], [10], [11].

Smart contracts provide the building blocks for an ecosystem
of decentralized finance [49], where users can interact with
lending pools, AMM exchanges, stablecoins, derivatives, asset
management platforms etc. At the time of writing, DeFi has
grown to an accumulative locked value of over 60B USD. For
a more thorough background on DeFi, we refer the interested
reader to an SoK [49]. We proceed to separate the background
into a finance- and security-related overview.

A. Finance Background

Market Maker: Market makers (MM) help the market (i.e.,
the traders buying and selling assets) having access to sufficient
liquidity (i.e., monetary asset amounts) for buy/sell orders to
match at the ask/bid price. Traditionally, market makers are
incentivized to operate as they can profit from the spread (i.e.,
the difference) between the bid and ask prices.

Automated Market Maker Exchanges: AMMs govern
through smart contracts a pool of assets, where a pricing
formula defines the asset purchase and sell price. Several
AMM pricing formulas are proposed in the literature; the
most popular form is the constant product AMM [35]. While
Bancor introduced the AMM concept, at the time of writing,
Uniswap [3] is the most prominent AMM with a daily trading
volume of over 944M USD and 5.06B USD of the total
supplied liquidity among 31, 202 different asset pairs3. One of
the better-known forks of Uniswap is Sushiswap [2].

Arbitrage: The process of selling/buying an asset in one
market while concurrently buying/selling in another market at
a different price is known as arbitrage. Arbitrage encourages
economic stability and is generally regarded as benign. DeFi
traders/miners track new blockchain state changes and conduct
arbitrage if the anticipated revenue from synchronizing two
markets exceeds the expected transaction costs. To perform
arbitrage, a trader may operate on the previous block state or
on the state of the pool of unconfirmed transactions (i.e. the
mempool) [46].

Slippage: The adjustment in the price of an asset during a
transaction is known as price slippage. Expected price slippage
is the anticipated rise or decrease in price depending on

3https://info.uniswap.org/

the amount to be exchanged and the available liquidity [53].
The expected slippage increases as trading volume increases.
Unexpected price slippage is the rise or decrease in price
during the interim time between creating a transaction and its
execution. The sum of the expected and unexpected slippage
represents the price impact of a trade.

Swap Routing Aggregators: An exchange aggregator is
a service to aggregate liquidity from multiple exchanges.
Aggregators may split a single trade into numerous smaller
transactions to receive the best overall trade price. The sub-
trades are then routed to various exchanges to provide the
best exchange price and minimize the trading slippage. In
March 2021, the three most significant off-chain aggregators
(1inch, Mocha, and Paraswap) amassed a total monthly volume
of 11.49B USD 4. Off-chain aggregators are not guaranteed
to yield optimal execution parameters due to the unexpected
slippage. To the best of our knowledge, off-chain aggregators
also do not perform arbitrage.

Flash Loans: Atomic blockchain transactions may execute
several actions in a rigorous sequence. If a single transaction
fails in one of its execution steps, the entire transaction
fails atomically and does not alter the blockchain state. This
atomicity property enables a novel financial product, flash loans.
Flash loans are loans drawn from a smart contract pool of assets
and are only valid within one atomic transaction. The flash
loan must be paid back by the end of the transaction; otherwise,
the loan fails. When a flash loan fails, the blockchain state
is not modified, corresponding to a state where the loan was
never granted to the borrower. Because lenders bear no risks
by the borrowers defaulting on the loan, flash loans quickly
grow to billions of USD [47].

B. Security Background

Front- and Back-running: is the process by which an
adversary observes a victim’s pending transaction on the
network layer and then acts upon this information by placing
trades before or after the victim’s transaction. While custodian
and centralized financial services are known to be under the
supervision of regulatory bodies [4], DeFi (and blockchain) are
not yet thoroughly regulated. Previous studies have observed
front-running bidding wars between DEX arbitrage bots [22],
[46]. Transaction fee bidding causes on-chain congestion and
introduces network layer overhead, which necessarily increases
the stale block rate and hence weakens the consensus security
of the underlying blockchain [30].

Sandwich Attack: A sandwich attack is a predatory trading
strategy, which exploits a pending, not yet executed trade [53].
Suppose an asset’s price is expected to rise/fall due to a pending
trade. In that case, a malicious front-runner can buy/sell the
asset before the victim transaction executes and then close
its position by selling/buying the same asset after the victim
transaction is confirmed. Because AMMs provide complete
transparency about the exchange’s state and the pricing formula,

4https://www.theblockcrypto.com/data/decentralized-finance/dex-non-custo
dial/dex-aggregator-trade-volume
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sandwich attackers can derive the optimal attack parameters.
Previous works investigate AMM-specific mitigations and find
that sandwich attacks are not profitable if the victim’s input
amount remains below a safe, market-state-specific threshold.

Miner Extractable Value: Miners retain the authority to
decide on the transaction order of their mined blocks. Miners
observe pending transactions on the network layer and may
maximize their revenue through the optimal transaction order.
For instance, the miners can perform front-running or sandwich
attacks [53]. The term “Miner Extractable Value” or MEV [22],
refers to the entire potential revenue that miners can extract
through transaction order manipulation. Related work quantified
that at least 28.8M USD in profit was extracted over two years
following the 1st December 2018 [46]. Because non-MEV
miners order by default transactions in descending transaction
fee (gas price) amount [53], a non-mining trader can also
capture MEV by adjusting their transaction fees. Related work,
for example, shows how trading bots engage in competitive
transaction fee bidding contests [46].

Stale Block Rate: Previous works have extensively shown that
blockchain forks increase the stale block rate and deteriorate the
consensus security by increasing the risks of double-spending
and selfish mining [30], [28], [17]. Zhou et al. [52] quantified
an MEV threshold at which MEV-aware miners are incentivized
to fork the blockchain. For instance, on Ethereum, a miner
with a hash rate of 10% would fork the blockchain if an MEV
opportunity exceeds 4× the block reward. Because arbitrage
is one of the prime sources of MEV, it is therefore of utmost
importance to minimize the need for arbitrage to increase
blockchain security.

C. AMM Arbitrage

We outline the traditional AMM design coupled with the
necessary third-party arbitrageurs in Figure 3. This AMM
design necessarily requires at least two separate transactions,
TXswap and TXarb to synchronize the prices on AMM1 and
AMM2 after the swap. Moreover, because TXswap and TXarb

are non-atomic (i.e., do not necessarily execute in succession),
multiple arbitrageurs, as well as miners, are likely to compete
over benefiting from the created arbitrage opportunity [22].

D. Off-chain AMM routing

Off-chain swap routing services calculate the best routing
path and parameters based on their local blockchain state (cf.
Figure 4). Off-chain routing avoids complex smart contract
operations, thereby minimizing transaction costs. However,
off-chain routing paths and parameters are not necessarily
optimal during execution, because the blockchain state might
change intermittently between route generation and execution.
To mitigate this problem, aggregators (such as 1inch) cooperate
with miners on privately mined transactions, which arguably
renders DeFi more centralized [6], [46]. Moreover, the goal
of routing is to only optimize the liquidity takers’ swap
transactions, while forgoing possible arbitrage opportunities
between other AMM exchanges.
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Fig. 3: Overview of the back-running arbitrage process in AMM
exchanges. The liquidity taker initiates a swap on AMM1 by
broadcasting its transaction (TXswap) on the P2P network. An
arbitrageur listens on the public P2P network and observes
TXswap. The arbitrageur then issues a back-running arbitrage
transaction (TXarb), if TXswap creates a profitable arbitrage
opportunity between AMM1 and AMM2. Note that miners
can collude with arbitrageurs to extract profits without failure
risks.

5.
 M

in
er

s 
or

de
r t

ra
ns

ac
tio

ns
 

[
,

, 
]2. Submits a transaction ,  

swap X for Y on AMM1 and 2

3. Observes , and  
another trade  on AMM1

4. Submits back-running   
between AMM1 and 2.

7. Executes 

8. Executes 

1. Fetches blockchain states

Arbitrageur

Aggregator

6. Executes 

Fig. 4: Off-chain routing aggregator. Upon (0) incoming swap,
the routing service calculates (1) optimal paths and trading pa-
rameters given a blockchain state. The routing service (2) issues
the transaction (txroute) on the P2P network. An arbitrageur (3)
observes txroute, and another swap (txswap). The arbitrageur
then (4) performs a back-running arbitrage (txarb). Because the
transaction order execution is not guaranteed off-chain routing
paths and parameters may be suboptimal.

III. A2MM

We proceed to introduce the A2MM design, system, threat,
and state transition model by adding arbitrage actions on top of
a known AMM model [53]. Note that we only study two-point
arbitrages, and we, therefore, focus on markets with two assets
in the following.

A. System Model

We consider a blockchain P2P network, where traders inter-
act with AMMs by signing transactions with their respective
private keys. For example, traders can exchange cryptocurrency
assets, deposit/withdraw assets to/from different exchange
pools, perform arbitrages, etc. Traders can freely adjust the
parameters of these transactions, such as the transaction fees
(e.g., gas price), slippage limit, expiration time, etc. A trader
then broadcasts a transaction on the asynchronous blockchain
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peer-to-peer (P2P) network [23], [38], [37], or may privately
send transactions to miners [53]. The transaction propagation
typically utilizes gossip or publish-subscribe mechanisms, and
nodes (including miners) may have different views of the
pending (i.e., unconfirmed) transactions stored in the mempool.
By default, miners order transactions according to the paid
transaction fees but were also shown to adhere to private
ordering policies [46].

B. Threat Model

We do not constrain the mining behavior of the miners but
assume that no miner can accumulate more than 33% of the
total hash-rate [28]. Miners can manipulate transaction ordering
by transparently ignoring the default transaction ordering rules
(i.e., highest-priced transactions first) or by attempting to hide
private agreements by pretending to participate in transaction
fee bidding contests [46]. We assume that smart contracts are
secure and free from vulnerabilities.

C. AMM State Transition

We follow the standard model for AMM exchanges [53].
An AMM consists of mainly two types of traders, namely
the liquidity providers and liquidity takers. A liquidity taker
buys or sells an asset in exchange for another asset, using the
liquidity providers’ disposable assets.

AMM State

Definition III.1. The state (or depth) of an AMM
market with two assets X and Y is defined as
(x, y) ∈ (R+)2. The sum of x and y correspond the
total amount of assets from X and Y deposited by
liquidity providers.

Two-asset AMMs typically support the following two-state
transition functions for liquidity takers to convert between asset
X and Y.

1) SwapXtoY : A liquidity taker can trade δx of asset X ,
increasing the available liquidity of asset X , in exchange
for δy of asset Y , decreasing the available liquidity of
asset Y (cf. Equation 1).

(x, y)
SwapXtoY (δx,δy)−−−−−−−−−−→

δx∈R+
(x+ δx, y − δy)

where: δy ≤ ∆y = pX→Y (x, y, δx) · δx
(1)

2) SwapY toX: The mirroring action for SwapXtoY .

Note that both SwapXtoY and SwapY toX use a pricing
function p(·) to determine the maximum amount of asset Y
the taker can receive. Each AMM exchange may choose a
custom pricing function p(·) for governing the asset exchange.
A liquidity taker can exchange δx amount of asset X for up
to ∆y amount of asset Y , while choosing to withdraw fewer
assets Y voluntarily.

Pricing Formula

Definition III.2. A pricing formula is a differentiable
function pX→Y (x, y, δx) : (R+)3 7→ R+, which maps
the AMM state (x, y) and input amount (δx) of asset
X to the best exchange rate the AMM offers.

Assumptions: We assume that the AMMs we consider abide
by the following properties.

Liquidity Sensitivity

Property 1. Given an AMM state (x, y), the price
pX→Y (x, y, δx) decreases as the trade size (δx) in-
creases. Similarly, the price pY→X(x, y, δy) decreases
as the trade size (δy) increases.

Liquidity sensitivity (cf. Property 1) enables the underlying
AMM market to adjust autonomously the price based on the
trading volume and direction. The more asset X a liquidity
taker purchases from an AMM, the more scarce X becomes
in the liquidity pool, and therefore the price of X increases
relative to Y (and vice versa). Property 1 implies that the
pricing functions are monotonically decreasing as the trade
volume increases.

Path Independence

Property 2. Given an inital market state (x, y), the
following sub-properties holds:

1) Two consecutive SwapXtoY transactions, respec-
tively swapping δ1

x, δ
2
x asset X to δ1

y, δ
2
y asset

Y , are equivalent to one SwapXtoY transactions,
swapping δ1

x + δ2
x asset X to δ1

y + δ2
y asset Y .

2) Two consecutive transactions, swapping δ1
x asset

X to δ1
y asset Y (SwapXtoY ) followed with δ2

y

asset Y back to δ2
x asset X(SwapY toX), where

δ1
x − δ2

x = δx, are equivalent to one SwapXtoY
transaction, swapping δ1

x− δ2
x asset X for δ1

y − δ2
y

asset Y .

Path Independence is a desirable AMM property because
it ensures that liquidity takers have no incentive to split a
trade into multiple smaller transactions on the same AMM
market. Note that when there exist numerous appropriate
AMM markets, it can still be more profitable to split a trade
and perform routing (cf. Section III-D).

Market Independence

Property 3. Given two state transition actions on two
different AMM markets, the execution order of these
two transitions will not impact the final states of the
two AMMs.
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Fig. 5: Decision tree of the A2MM exchange logic. A2MM
encourages first optimal routing, and if routing alone isn’t
sufficient, best-effort arbitrage may synchronize the markets.

Property 2 and 3 are applied in the following to compress
routing and arbitrage transactions in Section III-G. Note that the
same AMM can have multiple markets trading the same asset
pairs (X,Y ), but we assume these markets to have different
states. A state change on one market will hence not affect the
state or price of another market.

D. A2MM Design
In the following section we describe the proposed A2MM

design (cf. Figure 1). On a high-level, A2MM minimizes
the arbitrage opportunities between itself and other AMM
exchanges, after any A2MM state transition (e.g., a swap, add
or remove liquidity). Upon an incoming swap, the A2MM first
checks if the swap amount is sufficiently large to synchronize
the prices on the considered AMMs, and then performs optimal
routing (cf. Figure 5). Otherwise, A2MM performs optimal
routing and best-effort arbitrage among the considered AMMs.
A flash loan can be requested if the swap’s trader holds an
insufficient balance for arbitrage [47].

We assume that an A2MM market (X,Y ) is synchronizing
with N other AMM X,Y markets. The state of the ith (1 ≤
i ≤ N ) AMM X,Y market is denoted as (xi, yi). We formally
introduce the state transitions for arbitrage and routing.

1) ArbitrageForX: An arbitrageur can perform an arbitrage
between two or multiple AMM exchanges. Given two
AMMs with states (xi, yi) and (xj , yj) respectively. The
trader initiates the arbitrage by swapping δx of X for δy
amount of Y on AMM i. The arbitrageur then reverses the
trade by exchanging δy amount of Y on AMM j for δ′x
amount of X . If the arbitrage is successful, the arbitrageur
gains δ′x − δx amounts of X (cf. Equation 2).

(xi, yi, xj , yj)
ArbitrageForX(δx,i,j)−−−−−−−−−−−−→

δx∈R+

(xi + δx, yi − δy, xj − δ′x, yj + δy)

⇐⇒

(xi, yi)
SwapXtoY (δx,δy)−−−−−−−−−−→

δx∈R+
(xi + δx, yi − δy)

(xj , yj)
SwapY toX(δy,δ

′
x)−−−−−−−−−−→

δy∈R+
(xj − δ′x, yj + δy)

given δ′x − δx > 0, s.t.

{
δy ≤ pX→Yi (xi, yi, δx) · δx
δ′x ≤ pY→Xj (xj , yj , δy) · δy

(2)

2) ArbitrageForY : The mirroring action for ArbitrageForX.
3) RouteXtoY : When a liquidity taker swaps δx of asset X for

δy of asset Y , the taker can split its trade (δx1, . . . , δxN )
across N AMMs (cf. Equation 3).

4) RouteY toX: The mirroring action for RouteY toX.

(x1, y1, . . . , xN , yN )
RouteXtoY (δx)−−−−−−−−−−−−→

δxi∈R+, ∀1≤i≤N

(x1 + δx1, y1 − δy1 , . . . , yN − δyN )

⇐⇒

(xi, yi)
SwapXtoY (δxi,δyi)−−−−−−−−−−−→
δxi∈R+,∀1≤i≤N

(xi + δxi, yi − δyi)

s.t.

{
δx =

∑N
i=1 δxi, δy =

∑N
i=1 δyi

δyi ≤ pX→Yi (xi, yi, δxi) · δxi

(3)

E. Optimal On-Chain Swap Routing

A2MM performs RouteXtoY to maximize the amount of asset
Y the liquidity taker purchases after paying δx. We proceed to
formally define the optimal routing problem among N AMMs.

maximize δy =

N∑
i=1

δyi given (xi, yi) ∀ 1 ≤ i ≤ N

s.t. (x1, y1, . . . , xN , yN )
RouteXtoY (δx),δx=

∑N
i=1 δxi−−−−−−−−−−−−−−−−−−→

δxi∈R+, ∀1≤i≤N

(x1 + δx1, x1 − δy1 , . . . , xN + δxN
, yN − δyN ),

(4)

Theorem 1. Routing optimization aims to level the
asset price on multiple AMMs and can be solved by
greedily routing transaction volume.

PROOF BY CONTRADICTION: This proof shows that the
optimal routing among N AMMs must greedily route transac-
tion volume to the exchange with the best price (cf. Theorem 1).
We assume the existence of an optimal routing strategy (Soptimal)
for RouteXtoY , which in total routes δx amount of asset X to
δy amount of asset Y . More specifically, this optimal strategy
routes δx1, . . . , δxN of asset X to N AMMs, in exchange of
δy1, . . . , δyN of asset Y (δx =

∑N
z=1 δxz , δy =

∑N
z=1 δyz).

After the routing, we assume that AMM 2 still offers a better
price than AMM 1, meaning that Soptimal contradicts Theorem 1
and does not route all trading volume greedily to the AMM with
the best price. Equation 5 shows the state transition process.

(x1, y1)
SwapXtoY (δx1,δy1)−−−−−−−−−−−−→ (x′1, y

′
1)

(x2, y2)
SwapXtoY (δx2,δy2)−−−−−−−−−−−−→ (x′2, y

′
2)

δy = pX→Y (x1, y1, δx1)δx1

+ pX→Y (x2, y2, δx2)δx2 +

N∑
z=3

δyz

(5)

To prove that Soptimal is not the optimal routing strategy, we
show that the routing can output more asset Y if more trading

6



volume is routed to AMM 2, without changing the routing
strategy for AMM 3 to N. We denote this alternative strategy as
Salter, which routes δx1−∆, δx2+∆ of asset X to AMMs 1 and
2 respectively. AMM 2 still offers a better price for swapXtoY
after executing Salter, because the additionally routed amount
(∆) is arbitrarily small and PX→Y is a continuous function.
Equation 6 shows the state transition process for Salter.

(x1, y1)
SwapXtoY (δx1−∆,δy1∗)−−−−−−−−−−−−−−−→ (x1∗, y1∗)

(x2, y2)
SwapXtoY (δx2+∆,δy2∗)−−−−−−−−−−−−−−−→ (x2∗, y2∗)

δ′y = pX→Y (x1, y1, δx1 −∆) · (δx1 −∆)

+ pX→Y (x2, y2, δx2 + ∆) · (δx2 + ∆) +

N∑
z=3

δyz

where: pX→Y (x1∗, y1∗,∆) < pX→Y (x2∗, y2∗,∆)

(6)

Based on the liquidity sensitivity property (Property 1),
AMM 2 offers a worse price for SwapXtoY after executing
Salter compared to executing Soptimal (cf. Equation 7). This is
because Salter routes more trade volume to AMM 2, where
both strategies have the same initial state for AMM 2 (x2, y2).

pX→Y (x2∗, y2∗,∆) < pX→Y (x′2, y
′
2,∆) (7)

In Equation 8 we derive that the amount of asset Y Salter
outputs is greater than Soptimal using the path independence
property (cf. Property 2), which contradicts the assumption that
Soptimal is the optimal routing strategy. Theorem 1 is therefore
proven by contradiction. �

δ′y − δy = pX→Y (x1, y1, δx1 −∆) · (δx1−∆)

+ pX→Y (x2, y2, δx2 + ∆) · (δx2+∆)

− pX→Y (x1, y1, δx1) · δx1 − pX→Y (x2, y2, δx2) · δx2

= pX→Y (x1, y1, δx1−∆) · (δx1−∆) + pX→Y (x2, y2, δx2) · δx2

+ pX→Y (x′2, y
′
2,∆) ·∆

− pX→Y (x1, y1, δx1−∆) · (δx1−∆)− pX→Y (x2, y2, δx2) · δx2

− pX→Y (x∗1, y∗1,∆) ·∆
= pX→Y (x′2, y

′
2,∆) ·∆− pX→Y (x1∗, y1∗,∆) ·∆

≥ pX→Y (x′2, y
′
2,∆) ·∆− pX→Y (x2∗, y2∗,∆) ·∆ ≥ 0

(8)

F. Arbitrage Profit Maximization

In the following, we formally introduce the arbitrage profit
maximization problem between N AMMs. An arbitrage
between multiple DEXes may include multiple sub-arbitrage
steps. Given an arbitrage strategy with L steps, we use the
superscript, such as xl, yl, to denote the state and parameters at
a sub-step l, where 1 ≤ l ≤ L. The objective of the arbitrageur
is to maximize the revenue after executing all sub-arbitrage
steps (cf. Equation 9). Because the solution of Equation 9
depends on the implementation-specific AMM pricing formulas
for the N AMMs, we do not provide a general solution here.
The reader, however, can find an optimal solution for two
AMMs with constant product pricing formula in Section B-B
(corresponding to Uni- and Sushiswap capturing over 73.27%

of the total AMM market trading volume at the time of writing5,
accessed March 2021).

given: (xi, yi) ∀ 1 ≤ i ≤ N

maximize:
L∑
l=0

δ′lx − δlx

subject to: for each sub-step l (in total L steps) :
(xl+1
il

, yl+1
il

, xl+1
jl

, yl+1
jl

)

= ArbitrageForX(δlx, il, jl)

= (xlil + δlx, y
l
il
− δly, xljl − δ

′l
x , y

l
jl + δly)

(xl+1
k , yl+1

k ) = (xlk, y
l
k), if k /∈ {il, jl}

1 ≤ il ≤ N, 1 ≤ jl ≤ N, il 6= jl, ∀1 ≤ l ≤ L

(9)

G. Swap Compression
To minimize the required transaction fees of a swap, we show

in the following how A2MM compresses multiple transactions
of an atomic swap (cf. Figure 6).

SwapXToY on AMM 1

SwapXToY on AMM 2

...

SwapXToY on AMM 1

SwapYToX on AMM 2

Ex
ec

ut
io

n 
O

rd
er

SwapXToY on AMM 1

SwapXToY on AMM 1

SwapXToY on AMM 2

SwapYToX on AMM 2

...

SwapXToY on AMM 1

SwapYToX on AMM 2

...

Group Compress

Fig. 6: Overview of the swap compression process.

Theorem 2. An optimal strategy (Soptimal) perform-
ing routing and arbitrage among N AMMs on mar-
ket (X,Y ) is equivalent to a batch execution strat-
egy (Sbatch). Sbatch consists of at most N swaps
(SwapXtoY or SwapY toX). Both Soptimal and Sbatch
change the states of AMMs from (x1, y1, . . . , xN , yN )
to (x′1, y

′
1, . . . , x

′
N , y

′
N ).

PROOF: Both arbitrage and routing only consist of
SwapXtoY and SwapY toX transactions (cf. Equation 2 and 3).
Because the AMMs are independent (cf. Property 3), these
transactions can be reordered into N groups, where each group
only consists of transactions for the same market. We can then
batch the transactions within each group based on the path
independence property (Property 2). �

H. Limitations
In this work, we consider A2MM in isolation from other ex-

changes on other blockchains or external centralized exchanges.
However, asset prices realistically move outside of the regarded
AMM, which may still create arbitrage opportunities, even if
A2MM minimizes required arbitrages among the synchronized
AMMs. Moreover, the cost of price synchronization grows with
the number of AMMs that A2MM peers with and is therefore
limited (cf. Section VI). While in this work we only consider
AMM with similar pricing formulas, we believe that A2MM is

5https://www.theblockcrypto.com/data/decentralized-finance/dex-non-custo
dial/dex-volume-monthly
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adoptable any AMM pricing formula, given the corresponding
on-chain computation overhead.

IV. EVALUATION

In our evaluation we rely on the blockchain states of
Uni- and Sushiswap, two of the biggest on-chain DEXes
capturing 73.27% of the market volume at the time of writing6.
Therefore, our A2MM implementation peers with two AMMs
of the same pricing formula. In this scenario, the optimal
strategy for both routing and arbitrage can be mathematically
derived as we show in the appendix (cf. Section B). We use
Uniswap as a pricing oracle to fetch the X/ETH prices for
any arbitrary asset X7. We assume that the X/ETH price is
zero when we cannot determine the price, thus ignoring the
corresponding transaction. We adopt a price of 2000 USD/ETH
as of April 2021.

A. Empirical Comparison of AMM and A2MM

We perform an empirical comparison between AMM and
A2MM through concrete execution on past blockchain data. Our
experimental setup corresponds to the system model in Figure 7,
where we assume that we deploy an A2MM contract with a
user interface while using Uni- and Sushiswap’s liquidity pools.
Upon receiving a swap request, A2MM derives the routing and
arbitrage parameters on the fly on-chain.

Ethereum Virutal Machine (EVM)

Fetch blockchain state 
before the execution of 

 
Ethereum Archive Node

Crawl

Repack

Historical Uniswap/Sushiswap Tx 
Concrete 
Execution

 Tx with the same params 

State

arbitrage + routing

arbitrage + routing

Uniswap 

Sushiswap 

Fig. 7: System model of the A2MM evaluation. We concretely
execute on past blockchain data, and assume that A2MM
initially does not provide a liquidity pool and rather operates
through Uni- and Sushiswap.

We implement A2MM in 761 lines of code using So-
lidity v.8.2.0. The deployment of the A2MM contract
costs 2, 821, 822 gas (0.282 ETH, 564 USD) at a gas price
of 100 gWei. We crawl all asset swap transactions that are
sent directly to Uni- or Sushiswap from block 10794261
(4th September, 2020) to block 12000000 (8th March, 2021)
(185 days). Note that A2MM aims to reduce the number of
two-point arbitrage and sandwich opportunities, where arbitrage
and sandwich bots often use smart contract accounts. Because
we assume that all AMM swaps initiate at the A2MM’s user
interface, we expect the number MEV related transactions
to decrease. To avoid double-counting MEV transactions in

6https://www.theblockcrypto.com/data/decentralized-finance/dex-non-custo
dial/dex-volume-monthly, accessed March 2021

7To avoid overestimating the revenue, we estimate the ETH value of x
amount of asset X by simulating a Uni/Sushiswap trade, instead of relying
on the spot price.

our evaluation, we chose to only consider AMM swaps from
non-smart contract accounts (i.e., EOA accounts).

Transaction Fees When Peered With Two AMMs: A2MM
requires more computation for a single swap than a standard
AMM, because A2MM derives the routing and arbitrage
parameters across AMMs on-chain. A natural question is
how much more expensive A2MM’s execution ends up when
compared to an AMM, when it peers with Uni-/Sushiswap.
Table I presents our concrete execution results. For a swap
without arbitrage nor routing, we find that on average, liquidity
takers pay 6.97% higher fees for a swap on A2MM vs. AMM.
For a swap with routing, we find that A2MM requires an
excess 17.80% in terms of transaction fees compared to the
average transaction fee of an AMM swap. Finally, for a swap
with routing and arbitrage, A2MM’s excess in transaction fees
amounts to 60.22%. We estimate that the arbitrage action by
itself costs 60.22%− 17.80% = 42.42%.

Extractable Arbitrage/Routing Revenue of A2MM: In the
following, we quantify the income potential from A2MM’s
design, as arbitrage is known to yield positive incoming from
synchronizing prices. Routing provides better swap asset prices
by sourcing several liquidity pools simultaneously. We proceed
to measure both the positive income from arbitrage and the
price advantage from routing, allowing us to offer an objective
view of the costs of using A2MM compared to an AMM.

Our results suggest (cf. Table II) that within 185 days of
blockchain data, in total 460, 349 (81.87%) of the executed
A2MM transactions perform either arbitrage and/or routing,
extracting a total of 10, 675 ETH (21, 350, 565 USD). Due
to this positive income and the routing price advantage, in
expectation, A2MM reduces transaction fees by an average
of 90% compared to a standard AMM swap.

B. Two-point Arbitrage Overhead

While A2MM only mitigates two-point arbitrage overhead,
Qin et al. [46] show that historically 41% of the on-chain
arbitrages are two-point arbitrages. Therefore, we estimate that
A2MM will decrease about 41% of the on-chain and network
overhead caused by arbitrage bots, helping to reduce the stale
block rate, thus increasing blockchain consensus security.

In the following, we quantify both the on-chain and network
layer overhead for the past two-point arbitrages between Uni-
and Sushiswap to test the above intuition.

Block-space Overhead Heuristics: In the following we use Bi
to denote a block with height i, and txki to denote a transaction
mined within block bi at index k. We use fS(Bi) 7→ S to
denote the blockchain state after executing all transactions
in block Bi. We use the function fS(Bi, tx1, . . . , txN) 7→
S to denote the blockchain state after iteratively applying
transactions tx1, . . . , txN in the exact order on the blockchain
state S(Bi). In other words, if there are l transactions in block
Bi, then S(Bi) = S(Bi−1, tx

0
i , . . . , tx

l
i). We use the function

fA(s ∈ S, tx ∈ TX) 7→ bool to classify whether a transaction
tx successfully performs an arbitrage at blockchain state s (cf.
Section E in Appendix).
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Num. sub-swaps per swap Total 1 2 > 2

Transaction fee AMM A2MM AMM A2MM AMM A2MM AMM A2MM

1. Swap 127±32K 136±40K 121±24K 128±27K 182±39K 208±53K 258±49K 310±74K
2. Swap + Routing - 164±60K - 145±41K - 225±62K - 353±82K
3. Swap + Arbitrage 378±96K 228±68K 345±73K 203±49K 450±96K 282±69K 574±103K 390±82K

TABLE I: Empirical transaction fee comparison between the AMM and A2MM model. We consider three cases: (i) without
routing/arbitrage (ii) with routing, and (iii) with arbitrage.

Type Num. of Txs(%) Total Revenue Avg. Revenue Avg. A2MM Fee Avg. Revenue
Fee

A2MM
Avg. Revenue−Excess Fee

FeeAMM

ETH→Tokens 860.9K(53%) 12.0KETH(24MUSD) 0.01ETH(28USD) 0.02ETH(40USD) 70% 62%
Tokens→Tokens 494.2K(30%) 17.7KETH(35MUSD) 0.04ETH(72USD) 0.03ETH(56USD) 127% 137%
Tokens→ETH 271.5K(17%) 3.0KETH(6MUSD) 0.01ETH(22USD) 0.02ETH(32USD) 69% 60%
Total 1, 626.6K(100%) 32.7KETH(65MUSD) 0.02ETH(40USD) 0.02ETH(43USD) 93% 90%

Routing 588.0K(36%) 5.2KETH(10MUSD) 0.01 ETH(18 USD) 0.02ETH(36USD) 48% 39%
Arbitrage 561.7K(35%) 27.5KETH(55MUSD) 0.05 ETH(98 USD) 0.03ETH(60USD) 164% 203%

TABLE II: Revenue and cost of our concrete execution on past blockchain data, replaying previous Uni/Sushiswap transactions
on A2MM (i.e., the δx for SwapXtoY remains unchanged, cf. Equation 1). We adopt a price of 2000 USD/ETH as of April 2021.
Excess fee is the additional transaction fee A2MM costs when compared with an AMM (i.e., FeeA2MM−FeeAMM).

Percentile 10 20 30 40 50 60 70 80 90
Profit(USD) -20.3 -9.9 -3.8 -1.8 -1.0 -0.4 0.4 4.3 31.0

TABLE III: Percentile analysis of individual swaps’ profit from
our prototype implementation. We assume that traders pay the
same transaction fee price (gas price) in our concrete execution.
While only 37% of the swaps realize a positive profit, A2MM
in expectation provides a better price than an AMM.

We classify transaction txki as an block-space overhead
caused by front-/back-running arbitrages if Heuristic C1, and
one of Heuristics C2a and C2b are satisfied.

Heuristic C1: If transaction txki performs a successful arbi-
trage, then txki is not classified as an block-space overhead
(cf. Equation 10).

fA(S(Bi−1, tx
0
i , . . . , tx

k−1
i ), txki ) = false (10)

Heuristic C2a (Front-running): We test, if a re-positioning
of txki as the first transaction in each of the previous five
blocks (i.e. a 1-minute time window), would make txki
a successful arbitrage transaction. This test allows us to
classify whether txki is a failed front-running arbitrage
overhead (cf. Equation 11).

fA(S(bj), tx
k
i ) = true,where(i− 5) ≤ j ≤ (i− 1) (11)

Heuristic C2b (Back-running): By iterating backwards
through the transactions of the last 5 blocks, starting at
txki ’s position, we sequentially interleave txki after each
txlj , and test through concrete execution, whether txki
yields an arbitrage profit. This test allows us to identify
whether a transaction attempted an arbitrage operation
(cf. Equation 12).

fA(S(bj), tx
l
j , tx

k
i ) = true

where: (i− 5) ≤ j ≤ (i− 1), txlj 6= txki .

gas price of txki ≤ gas price of txlj

(12)

Network Layer Overhead Heuristics: We classify a trans-
action tx as a network layer overhead targeting a successful
arbitrage transaction txarb, if the following three heuristics
(N1, N2 and N3) are satisfied. Note that while a transaction
may propagate on the P2P network, that transaction doesn’t
necessarily appear in the blockchain. The helper function
fP2P(x ∈ TX,B) returns the time of a transaction or block’s
first known appearance on the P2P network.

Heuristic N1: N1 tests whether a transaction on the P2P
layer is a failed arbitrage attempt. Given an identified
successful on-chain arbitrage transaction txarb, we replace
txarb iteratively with each transaction tx recorded by our
P2P network node. If tx yields an arbitrage profit under
concrete execution, we classify tx as a failed network
layer arbitrage attempt, caused by either GPA or BRF.
Heuristics N2 and N3 attempt to narrow down the issuance
time of an arbitrage transaction tx. If both the two tests
in Heuristics N2 and N3 are satisfied, we then classify tx
as a network layer overhead transaction targeting txarb.

Heuristic N2: N2 tests the lower time of appearance of an
arbitrage attempt. We find the earliest appearance of
all txarb related transactions on the P2P network, such
as: (i) the transaction that txarb attempts to front-/back-
run (denoted as txvictim

txarb
), and (ii) all failed block-space

overhead transactions competing with txarb (denoted as
TXoverhead

txarb
). For each network layer overhead transaction

tx, we test if tx is discovered after the earliest appearance
of all txarb related transactions on the P2P network (cf.
Equation 13).
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Position Front-running Back-running Total

Same block 13,460(73%) 117,728(90%) 131,188(88%)
After 1 block 2,876(16%) 7,657(6%) 10,533(7%)
After 2 blocks 909(5%) 2,118(2%) 3,027(2%)
After 3 blocks 465(3%) 1,353(1%) 1,818(1%)
After 4 blocks 419(2%) 860(1%) 1,279(1%)
After 5 blocks 268(1%) 775(1%) 1,043(1%)

TABLE IV: Statistics of the block-space overhead we detect.
95% of the on-chain failed arbitrages are mined within 1 block
after the MEV arbitrage opportunity is extracted.

ttxarb
= fP2P(tx) < min({fP2P(x)}),where

x ∈ txarb∪TXoverhead
txarb

∪txvictim
txarb
∪txtarget

txarb

(13)

Heuristic N3: N3 tests the upper time of appearance of
an arbitrage attempt. For each network layer overhead
transaction tx, we test if tx is discovered before txarb is
mined (cf. Equation 14).

fP2P(tx) > fP2P(b),where txarb is mined in b (14)

Empirical Results: To quantify the amount of P2P network
layer overhead caused by two-point arbitrages, we modify
the Ethereum geth client to store all transactions received on
the P2P network layer over 213, 538 blocks (36 days) from
block 11, 813, 201 (Feb-08-2021) to block 12, 055, 081 (Mar-
17-2021). Intuitively, the number of transactions the Ethereum
node can observe increases with the number of peer connections,
the network bandwidth, and the computation power of the
machine. Our geth client operates on a Ubuntu 20.04.1 LTS
machine with AMD Ryzen Threadripper 3990X (64-core, 2.9
GHz), 256 GB of RAM and 4× 2 TB NVMe SSD in Raid 0
configuration. We limit the geth client to at most 1, 000
connections with other Ethereum peers instead of the default
of 50 peers (cf. Figure 8). We captured in total 246B transaction
propagation messages from 81, 736 unique peers originating
from 63, 744 unique IP addresses and 2, 859, 833 unique
IP:Port combinations.
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Fig. 8: Number of connections of our modified geth node while
listening on the Ethereum P2P network from block 11, 813, 201
(Feb-08-2021) to block 12, 055, 081 (Mar-17-2021).

Potential Freed up Block-Space by A2MM Given the
heuristics C1 and C2, we identify in total 148, 888
on-chain two-point arbitrage overhead transactions (cf.

Table IV). Surprisingly, the majority are back-running
arbitrage failures (130, 491/87.64%). On average, 2.5
and 6.0 overhead transactions are mined on-chain for each
front- and back-running opportunities, with an average
gas cost of 193 ± 70K. As front-running arbitrageurs
participate in PGA, front-runners pay a 1.56× premium
average gas price compared to back-runners. We use
Equation 15 to quantify A2MM’s on-chain reduction over
213, 538 blocks (36 days), where C denotes the average
on-chain space cost. We find that in expectation, A2MM
reduces the consumed block-space by 32.8%.

Creduced = 1−
CA2MM swap

CAMM swap + Carbitrage + Cblock-space overhead
(15)

Potential Network Overhead Reduced by A2MM Given
the heuristics N1, N2 and N3, we identify 105, 960
network overhead transactions, where the majority
(400, 471/89.4%) are caused by back-running arbitrageurs.
On average, 10.5 and 27.4 network overhead transactions
are issued for every front-/back-running arbitrage
opportunity, which corresponds to a factor of 4.2×, 4.6×
more than the block-space overhead. When an arbitrage
opportunity appears, we measure that the off-chain
overhead transactions sum to an average of 5.83± 6.57
kb per block, which is around 13.8% of a block’s size
on the 1st of March 20218.

Limitations: Our evaluation may consist of false negatives.
For example, an overhead arbitrage transaction may be dropped
in the asynchronous P2P network before reaching our network
node. The blockchain overhead statistics we report should
therefore only be regarded as a lower bound of the actual
network overhead. Note that a transaction is only classified as
an overhead, if it does perform a two-point arbitrage during
concrete execution. Therefore, our overhead evaluation suffers
from no false positives.

V. SECURITY IMPLICATIONS OF A2MM

In the following, we quantitatively outline the relevant
security improvements A2MM provides on the blockchain
consensus.

A. Stale Block Rate Simulation

This section simulates the P2P network of four blockchains
(Ethereum, Bitcoin, Litecoin, and Dogecoin) to estimate
quantitatively the relationship between the stale block rate
and the miner bandwidth. To capture the block propagation in
the P2P network, we extend our system model from Section III.
The asynchronous nature of blockchain P2P propagation is
extensively studied by related works [26], [23], [30], [29], [53],
on which we build upon.

Various factors influence block propagation, including the
number of miners, the network topology, the peer internet
latency, bandwidth, and overall network congestion. To ease our
experiments and operate under the best network connectivity,

8https://etherscan.io/chart/blocksize
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Fig. 9: For every two-point arbitrage opportunity on-chain, we correlate the accumulative overhead transactions propagated on
the P2P network layer. We capture front- as well as back-running transactions, covering PGA and BRF.
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Fig. 10: Cumulative weekly revenue of the A2MM implementation extracted through arbitrage and routing based on concrete
execution of past blockchain data.

Ethereum Bitcoin Litecoin Dogecoin

Block interval (min) 0.223 9.474 2.59 1.07
Block size mean (kB) 44.0 863.8 61.1 15.9
Block size std (kB) 3.0 25.0 33.4 14.9

TABLE V: Blockchain parameters we use to simulate the
P2P network for Ethereum, Bitcoin, Litecoin and Dogecoin.
These statistics are measured using 90 days of blockchain data,
from Jan-09-2021 to Apr-09-2021.

we assume that the miners create direct point-to-point relations
among themselves. Consequently, the number of sporadic
network nodes, the network topology, intermediate devices
(relay nodes, switches, and routers), and the TCP congestion
management are all abstracted. We approximate the block
propagation duration by dividing the block size over the band-
width and adding the communication latency. To parameterize
a realistic block size distribution in our simulations, we assume
that the block size follows a normal distribution, where the
mean and variance are derived using 90 days of blockchain
data (cf. Table V) 9. To capture latency distribution, we apply
the mean percentile statistics [38], [29], [53] and use linear
interpolation to estimate the underlying cumulative probability
distribution (cf. Table IX in the Appendix). We only consider
the hashing power of the top 10 miners for each blockchain
(cf. Table VIII in the Appendix), and assume that miners have
a symmetrical upload and download bandwidth.

9https://bitinfocharts.com, accessed Apr 2021
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Fig. 11: Simulated stale block rate given the average P2P
network bandwidth for Ethereum, Bitcoin, Litecoin and Do-
gecoin. We fit a least square regression line for Ethereum
(0.000158× bandwidth2 − 0.03541× bandwidth + 7.531).

MEV network overhead deteriorates the miners’ P2P band-
width and hence increases the blockchain’s stale block rate. The
most significant arbitrage back-running in terms of overhead
we capture amounts to a total of 1.92 Mb data from repeated
transactions within one block interval (13 seconds). Note that
the total amount of data miners receive is amplified as the
number of connected peers increases. For instance, if miners
have an initial upload and download speed of 70Mbit/s, and
overhead transactions are propagated back and forth 200 times,
the average bandwidth will decrease to 40.5Mbit/s 10. Based

10 1.92Mb
13s × 200 = 40.5Mbit/s
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Front-running Back-running

Strategy Priority Gas Auctions Back-run Flooding
Target State Confirmed Block State Pending Block State

Overhead

On-chain? Yes Yes
Network? Yes Yes

TABLE VI: If an MEV bot acts on a confirmed block state,
it performs PGA against other competing front-running bots.
If an MEV bot acts on a pending block state, we observe
back-run flooding. Both GPA and BRF cause on-chain and
network layer overheads.

on our 2nd degree least-square polynomial fitting, this decrease
in bandwidth leads to a 0.53% increase in stale block rate (cf.
Figure 11).

Note that miners have an incentive to connect with as many
nodes as possible to minimize the risks of eclipse attacks [33],
while the network layer overhead is amplified with the number
of connections. We leave the estimation of such network
overhead amplification factor to future works.

B. Sandwich Attack Mitigation
Sandwich attacks are not profitable if the victim’s input

amount remains below the MVI [53]. This threshold depends on
the AMM pricing formula, the total underlying pool liquidity, as
well as the trader’s slippage configuration. The MVI threshold
for instance increases if the market liquidity increases.

By routing the trading volume onto multiple AMM ex-
changes, A2MM aggregates the MVI thresholds among the
underlying liquidity pools. In the simple case, where two AMM
markets have the same liquidity and pricing formula, A2MM’s
accumulative MVI threshold is 2× the MVI of a single AMM.

C. Back-run Flooding Overhead Reduction
We observe back-run flooding on the P2P network, where

MEV bots broadcast multiple similar back-running transactions
for a single MEV opportunity (cf. Table VI). It appears that
BRF may increase the success rate of back-running. For
instance, each of the flooding transactions is likely to follow
a different network propagation path in the asynchronous
P2P network, which could increase the likelihood of a swift
miner reception. While we find that 88.80% of the successful
arbitrage transactions are accompanied by BRF, we cannot
provide quantitative insights to what degree BRF improves the
success-rate of back-running.

To quantify the network layer overhead, we identify past
arbitrages on-chain and correlate the dropped transactions on
the P2P network provided by our network listening node. We
find that one of the most amplified flooding events entails 358
transactions on the network layer for a single arbitrage
opportunity. These back-running transactions are identical,
except the last byte of the transaction message, floods 65.7kb
of data traversing the P2P network. This is equivalent to 1.5×
the average block size on the 1st of March 202111. Only one of

11https://etherscan.io/chart/blocksize

these transactions is confirmed on-chain12, classified as a failed
arbitrage attempt by us. The remaining 357 transactions have a
conflicting nonce with the confirmed transaction, and therefore
discarded. We observe that back-run flooding is comparatively
cheap because bots issue conflicting MEV transactions (e.g.,
with the same nonce), while only one transaction is mined.

VI. ARBITRAGE/ROUTING AMONG N AMMS

In this section, we shed light on the performance of A2MM
when peered with N AMM markets (abbreviated as N -A2MM).
While Section B in the appendix provides an optimal arbitrage
strategy of 2-A2MM, Algorithm 1 presents our sub-optimal
two-point arbitrage strategy for N -A2MM, where N > 2.
Intuitively, our strategy starts with the two AMMs offering
the best and worst prices, and gradually narrows the price gap
through arbitrage. Along this narrowing process, if the prices of
a group of AMMs are synchronized, we aggregate their liquidity
and treat them virtually as a single exchange. Executing a
swap on a virtually aggregated exchange is equivalent to
performing routing, where the trade volume is routed to each
of the underlying AMM based on their liquidity. Our strategy,
therefore, translate the arbitrage problem of N -A2MM into 2-
A2MM sub-problems.

To ease the reader’s understanding, we visualize the arbitrage
process among three AMMs in Figure 12. The three AMMs
we consider have prices sorted in ascending order (p1, p2, and
p3 respectively). Our algorithm hence performs arbitrage by
considering only AMM 1 and 3 first. As the price gap narrows,
we can encounter three different cases. In the first case, the
price of AMM 1 increases from p1 to p2, which is synchronized
with the price of AMM 2. Our algorithm then aggregates these
two exchanges, and continues the arbitrage process between the
newly aggregated virtual AMM and AMM 3. The second case
is the symmetric to the first case, where the price of AMM 3
falls from p3 to p2, and our algorithm aggregates AMM 2
and 3. In the last case, (due to fees) the prices of all three
AMMs are not synchronized, therefore we do not aggregate
any AMMs.

Table VII shows the cost of Algorithm 1 among N constant
product AMMs. We estimate that the transaction cost of 3-
A2MM is 1.7× the cost for 2-A2MM. We estimate the costs
by applying linear interpolation based on our empirical cost
evaluation from Table I.

VII. RELATED WORK

AMM: The literature proposes various blockchain-based ex-
change models covering limit order book models [5], [42], [39],
auctions [24], payment channel [41] and trusted hardware [16]
were proposed in the literature. Uniswap is to date the
most actively used constant product AMM, while alternative
weighted AMMs emerged [1].
Arbitrage: Identifying arbitrage opportunities is extensively
studied in traditional, centralized finance (or CeFi) [19], [21].
One common methodology is to create a graph of all pairwise
assets that can be traded to use a greedy search strategy, such as

120x49bc22c9c45d31064f3cf7f7bd5e1494439603d4f6e809b0a715bc08d1b585c8
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Number of synchronized AMMs
Type 2 3 N > 3

Number of
Arbitrage computation 1 2 N−1
Synchronize volume 0 1 2N−5
Swaps 2 3 N

Cost over AMM average swap cost
Routing to one AMM 17.80% 17.80% 17.80%
Arbitrage computation 42.42% 84.84% 42.42%×(N−1)
Threshold computation N/A 17.80% 17.80%×(2N−5)
Swap execution 100% 150% 200%
Total cost 160.22% 270.44% 217.80%

+42.42%×(N−1)
+17.80%×(2N−5)

TABLE VII: Cost prediction of performing two-point arbitrages
among multiple AMMs when a user sells asset X to purchase
asset Y. The underlined cost ratios are taken from our two-
point arbitrage evaluation (cf. Table I). The synchronize volume
quantifies the amount of trading volume required to synchronize
the asset price among multiple AMMs. We estimate that the
cost of synchronize volume is similar to the cost of a single
optimal routing.

SwapYForX SwapXForY

SwapYForX SwapXForY

SwapYForX SwapXForY

Case 1

Case 2

Case 3

1
2

1
2

1 1
22

1 1

Y/X price

Y/X price

Y/X price

Fig. 12: Visualization of the two-point arbitrage process
among three AMMs, which performs at most 3 swaps (either
SwapY toX or SwapXtoY ). In the first case, the liquidity from
AMM1 and AMM2 are aggregated for SwapY toX. The second
case is symmetric to the first. In the third case, the arbitrage
does not trigger AMM aggregation.

the Bellman-Ford-Moore algorithm, to search the trading space.
For instance, the Bellman-Ford-Moore algorithm operates with
a complexity of O(E∗V ) in a graph of E edges and V vertices.
Such a greedy search methodology aims to create a circular,
profitable trading opportunity. Greedy search approaches are
restricted to actions such as trade asset X for Y . However,
because a greedy search algorithm only follows the locally
optimal choice at each action, it might fail to explore and find
profitable trading strategies. Zhou et al. show two mechanisms
to automatically discover profitable arbitrage opportunities in
the intertwined DeFi contract graph [52]. Bartoletti et al. distill
fundamental structural and economic aspects of AMMs, and
in particular discuss the arbitrage problem [14].

Front-Running and Miner Extractable Value: Bonneau et al.
[17], introduce the concept of bribery attack, which incentivizes
miners to adopt a blockchain fork instead of the longest chain.
Daian et al. [22], introduce the concept of gas price auctions

(PGA) among trading bots as well as the concept of MEV.
MEV widens the variance of block rewards, encourages both
bribery and under-cutting attacks [17], [20]. The literature
captures front-running by allowing a “rushing adversary” to
interact with a protocol [15]. Previous studies [13], [53] suggest
that HFT performance is strongly associated with latency and
execution speed. The (financial) high-frequency trading (HFT)
literature [7], [44] explores several trading strategies and their
economic impact, such as arbitrage, news reaction strategies,
etc. in traditional markets. Most of the traditional finance
market strategies are applicable to AMM and decentralized
exchanges [22], [8], [47], [46], [53], [52].
Eclipse Attacks: Strategically placed blockchain network
nodes may control when and if miners receive transactions,
affecting the transaction execution time [43], [34], [31], [33].
Malpractices on Exchanges: Malpractices on financial ex-
changes is a well-studied domain. Besides the traditional market
manipulation techniques [36] (such as cornering, front-running,
and pump-and-dump schemes), previous works [40] studies
techniques such as spoofing, pinging, and mass misinformation,
which leverage, e.g., social media, artificial intelligence, and
natural language processing. Techniques were shown to deceive
HFT algorithms [9]. To counterbalance this inherent trust,
regulators conduct periodic and costly manual audits of banks,
brokers, and exchanges to unveil potential misbehavior. Because
DEXes operate under weak identities and censorship resilience
(from both the creators, users, and miners), regulators may
face challenges to impose anti-money laundering legislation.

VIII. DISCUSSION

We hope that our work engenders a wider corpus of
orthogonal blockchain application designs which take into
account the nature of the underlying ledger. We would like
to emphasize that our work is based on a non-optimized
prototype implementation which can likely be improved through
additional engineering efforts.

Our evaluation shows that A2MM does lower the required
exchange block-space by 32.8%. As such, A2MM classifies
as a scaling solution for both the network as well as the
blockchain layer. While most existing backward-compatible
scaling solutions such as payment channels, off-chain hubs,
etc [32] provide weaker security guarantees, A2MM inherits as
a decentralized application the native blockchain security prop-
erties, and moreover improves the security of the blockchain
consensus as shown in this paper.

IX. CONCLUSION

By means of the realization that one blockchain should
only operate at most one AMM exchange, we design a novel
A2MM exchange, which allows exchange users to atomically
extract Miner Extractable Value, instead of leaving such
opportunity to others. We show how A2MM can avoid two-
point arbitrage MEV overhead on the P2P network and the
blockchain transaction space. Reducing such overhead allows
to strengthen the blockchain’s consensus security, without
resorting to centralized relayer which undermine the very reason
permissionless blockchains exist.
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While A2MM inherently takes advantage of the atomic
nature of blockchain transactions for arbitrage and routing,
our proposal can serve as inspiration to design further MEV-
friendly DeFi protocols, e.g., for liquidations in lending
markets. We hope that our work provides insights into a
previously unconsidered and orthogonal design space for secure
DeFi protocols which sustainably recognize the decentralized
characteristics of permissionless ledgers.
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APPENDIX A
MEV OVERHEAD TAXONOMY

In the following, we provide a high-level taxonomy of
the different sources of technical overhead introduced by
MEV opportunities. We primarily differentiate between MEV
opportunities on (i) the not-yet-confirmed network layer state
and on (ii) the confirmed blockchain state. Note that we ignore
the existence of blockchain forks for simplicity. We consider
the MEV aware bots to not being miners, while the following
reasoning also applies to miners extracting MEV.
Confirmed Block State MEV: An MEV extraction bot can
choose to only act on a confirmed blockchain state, i.e., once
a block is mined. Once a block at height i is received by the
bot, the bot attempts to front-run all other transactions in the
next block i+ 1. Confirmed state front-running is destructive,
meaning that the bot bears no consideration to the subsequent
transactions in the same block [46], [27].
Unconfirmed Block State MEV: An MEV extraction bot
may observe the unconfirmed blockchain transactions and
anticipate how the next miner would order these transactions
within a block (e.g., given the paid transaction fees). Based
on the anticipated transaction ordering, the arbitrageur then
verifies whether new MEV opportunities surfaced. If an MEV
opportunity is found, the bot ideally issues a back-running
arbitrage transaction as an exploit [46], [27].
Priority Gas Auction (PGAs) Overhead: PGA is the process
by which MEV aware bots are competitively bidding on
transaction fees to obtain a specific transaction position (usually
the first) in the next block. Because a transaction in the miner’s
mempool can be replaced before it is confirmed, PGA bots
usually emit a new transaction with higher bids to replace
their previous transaction [22], [53]. Although the replaced
transaction is dropped by the network eventually after the
new transaction is confirmed, the replaced transaction is still
broadcasted on the network layer. Therefore PGA causes an
overhead on the blockchain network layer.
Block-space Overhead: Trading bots increasingly extract
MEV with optimal parameters [47], bequeathing no revenue
for following MEV bot transactions, which should then either
revert with an error or fail silently. We classify failed successful
MEV transactions as on-chain MEV overhead.

APPENDIX B
IMPLEMENTATION

In this section, we present a concrete A2MM implementation
with two constant product AMM DEXes, namely Uniswap
V2 and Sushiswap. Both these two exchanges follow a
constant product formula, with a commission fee of 0.3%
(cf. Equation 16).

pX→Y (x, y, δx) = y − x · y
x+ δx · (1− 0.3%)

pY→X(x, y, δy) = x− x · y
y + δy · (1− 0.3%)

(16)

In the following, we denote the Uniswap and Sushiswap
(X,Y ) market as DEX 1 and 2, where the price of AMM 1 is
greater than or equal to the price of AMM 2 for SwapXtoY
(i.e., y1

x1
≥ y2

x2
). We use (x1, y1) and (x2, y2) to denote the

states of DEX 1 and DEX 2 respectively.

A. RouteXtoY

As we have shown in Section III-E, the optimal routing
strategy is to greedily route the trading volume to AMM 1 until
the prices of both markets are synchronized. After the price
synchronization, the remaining volume is routed to both AMM
1 and 2, while keeping the prices the same (cf. Theorem 1).

In Equation 17, we compute the threshold (δ̄x), such that
the prices between AMMs 1 and 2 will be synchronized after
swapping exactly δ̄x of asset X for asset Y on AMM 1.

y′1
x′1

=
y2

x2
⇐⇒

x1·y1
x1+δ̄x·0.997

x′1 + δ̄x
=
y2

x2

⇐⇒δ̄x ≈
1.002(

√
x1y2 (2.257 · 10−6x1y2 + x2y1)− x1y2)

y2

(17)

We now consider the optimal routing strategy if the prices
between AMMs 1 and 2 are synchronized (i.e., y1

x1
= y2

x2
). We

use q = x1

x2
= y1

y2
to denote the ratio of funds between the two

DEXes. In Equation 18, we compute the optimal routing ratio
k given that the liquidity taker trades δx amount of asset X ,
where we route k ·δx, (1−k)·δx to AMMs 1 and 2 respectively.

y′1
x′1

=
y′2
x′2
⇐⇒

x1·y1
x1+k·δx·0.997

x1 + k · δx
=

x2·y2
x2+(1−k)·δx·0.997

x2 + (1− k) · δx

⇐⇒
q2·x2·y2

q·x2+k·δx·0.997

q · x2 + k · δx
=

x2·y2
x2+(1−k)·δx·0.997

x2 + (1− k) · δx

⇐⇒x2 + (1− k) · δx · 0.997

x2 + k
q
· δx · 0.997

=
x2 + k

q
· δx

x2 + (1− k) · δx

⇐=1− k =
k

q
⇐⇒ k =

q

1 + q
(18)

Therefore, the optimal routing strategy routes δ̄x to AMM
1 first, such that the prices between the two exchanges are
synchronized. The routing strategy then routes q

1+q of the
remaining liquidity to AMM 1, and 1

1+q to AMM 2 (cf.
Equation 18).
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B. ArbitrageForX

In the following, we derive profitable arbitrage constraints
among two constant product AMM exchanges (e.g., Uniswap
and Sushiswap). The constraints are mathematically simple,
such that a smart contract derives it at low costs on-chain. We
also derive the formulas to calculate optimal two-point arbitrage
parameters to maximize arbitrage revenue. Equation 19 shows
the specific arbitrage objective function for two constant product
AMMs, derived by substituting Equation 16 into Equation 9.

maximize δ′x−δx = pY→X(x2, y2, p
X→Y (x1, y1, δx))−δx (19)

To find the optimal arbitrage parameter (δoptimalx ), we solve
the derivative of the objective function d

dx (δ′x − δx) = 0.
Equation 20 shows the only positive solution for δoptimalx .

δoptimalx ≈
1.003

(
−1000x1y2 + 997

√
x1x2y1y2

)
997y1 + 1000y2

(20)

In Equation 21, we substitute δoptimalx into the objective
function to derive the optimal revenue.

δ′x − δx ≈−
x2y2

− 0.997x1y1

x1−
0.997(c1x1y2−c2

√
x1x2y1y2)

997y1+1000y2

+ 0.997y1 + y2

+ x2 +
c1x1y2 − c2

√
x1x2y1y2

997y1 + 1000y2

where c1 ≈ 1003.009

c2 ≈ 1000.000
(21)

In Equation 22, we find the constraint for the arbitrage
opportunity to be profitable, without considering transaction
fees.

δ′x − δx > 0 =⇒ y2

x2
< 0.994

y1

x1
(22)

We, therefore, apply Equation 22 to verify whether arbitrage
is profitable given a blockchain state and use the optimal
parameters (cf. Equation 20) to extract the maximum revenue.

APPENDIX C
MINER HASHING POWER

Table VIII shows the hashing power we extract from various
sources to simulate the P2P network for Ethereum13, Bitcoin14,
Litecoin15 and Dogecoin16.

APPENDIX D
SUB-OPTIMAL TWO-POINTS ARBITRAGE FOR N -A2MM

Algorithm 1 shows the sub-optimal ArbitrageForY strategy
among N + 1 AMMs on X/Y market.

13https://etherscan.io/stat/miner?blocktype=blocks, accessed Apr 2021
14https://btc.com/stats/pool, accessed Apr 2021
15https://www.litecoinpool.org/pools, accessed Apr 2021
16https://explorer.viawallet.com/doge/pool, accessed Apr 2021

Rank Ethereum Bitcoin Litecoin Dogecoin

1 24.3% 17.9% 16.0% 14.9%
2 19.3% 15.5% 14.4% 13.61%
3 10.4% 11.9% 14.0% 13.38%
4 5.8% 11.4% 12.2% 12.58%
5 4.6% 9.9% 11.4% 11.46%
6 4.3% 8.7% 10.2% 10.74%
7 3.8% 8.1% 9.2% 8.68%
8 2.8% 4.3% 7.4% 7.35%
9 2.6% 2.7% 1.8% 1.47%

10 2.5% 2.5% 1.2% 0.73%

TABLE VIII: The hashing power distribution for Ethereum,
Bitcoin, Litecoin and Dogecoin as of April 2021.

Pct % 0% 10% 33% 50% 67% 90% 100%

[38] - 99 151 208 231 285 -
[29] - 92 125 152 200 276 -
This work 0 95.5 138 180 215.5 280/5 300

TABLE IX: We base the latency distribution(ms) in this work
on the mean statistics of the Ethereum P2P network provided
by related works [38], [29].

APPENDIX E
PAST ARBITRAGE VOLUME OPPORTUNITIES

In the following, we quantify the volume and number of trans-
actions performing two-point arbitrage on past blockchain data
from block 10, 794, 261 (4th September, 2020, Sushiswap’s
deployment) to block 12, 000, 000 (8th March, 2021) (186
days).
Arbitrage Heuristics: We adjust the heuristics proposed by
Qin et al. [46] to detect past extracted two-point arbitrages.
Recall that every ArbitrageForX consists of two state transitions
(cf. Equation 2). In the following we denote these two
transitions as SwapXtoY (δ1

x, δ
1
y) and SwapY toX(δ2

y, δ
2
x).

Heuristic 1 We assume that the arbitrageurs attempt to min-
imize their risks, and therefore execute both SwapXtoY
and SwapY toX atomically in the same transaction. Note
that, unlike previous work [46], we do not constrain the
execution order of SwapXtoY and SwapY toX.

Heuristic 2 The output (δ1
y) of SwapXtoY must be greater

than the input (δ2
y) of SwapY toX.

Heuristic 3 The input (δ1
x) of SwapXtoY must be less than the

output (δ2
x) of SwapY toX. This implicitly assumes that an

arbitrageur asserts a positive revenue in the smart contract,
and reverts otherwise (ignoring the transaction fees).

Empirical Results: We consider all assets and mar-
kets on Uni- and Sushiswap over 186 days, from
block 10, 794, 261 (4th September, 2020, Sushiswap’s de-
ployment) to block 12, 000, 000 (8th March, 2021). Among
the 22, 232, 144 Uni/Sushiswap related transactions, we identify
a total of 164, 345 (0.7%) successful two-point arbitrage trades.
These arbitrage activities realize a revenue of 28, 956 ETH
(25, 541, 382 DAI), contributing 1.8B USD of trading volume
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Algorithm 1: Sub-optimal ArbitrageForY strategy
among N + 1 AMMs on X/Y market. Our strategy
iteratively performs three steps to extract arbitrage
revenue, namely (i) AMMs aggregation; (ii) arbitrage
computation; (iii) threshold computation; (iv) swap
execution, until the price of all AMMs are leveled.

17M [0 . . . N ]← AMMs with ascending Y/X price;
l← 0 ; r ← N ;
while True do

// Aggregation
ML ← aggregate exchanges M [0] to M [l];
MR ← aggregate exchanges M [r] to M [N ];
if arbitrage betweenML and MR is profitable? then

// Arbitrage computation
Simulate arbitrage between ML and MR;
pML

← price of ML after arbitrage simulation;
pMR

← price of MR after arbitrage simulation;
bshift

L ← (pML
> pM [l+1]) ∧ ((l + 1) < r);

bshift
R ← (pMR

> pM [r−1]) ∧ (l < (r − 1));
// Synchronize volume

if bshift
L then
δlx ← such that pML

== pM [l+1] if
ArbitrageForY (δlx,M [l],M [r]) is executed;

if bshift
R then
δrx ← such that pMR

== pM [r−1] if
ArbitrageForY (δrx,M [l],M [r]) is executed;

// Swap execution

if bshift
L and δlx ≤ δrx then
ArbitrageForY (δlx,M [l],M [r]);
continue;

if bshift
R and δlx ≥ δrx then
ArbitrageForY (δrx,M [l],M [r]);
continue;

else
break;

Heuristic Limitations: Heuristic 1 assumes that arbitrageurs
perform arbitrage only within atomic transactions, as in to
minimize execution risks. Naturally, some arbitrageurs may
not perform atomic arbitrage, especially when not colluding
with miners. Heuristic 1 can therefore introduce false negatives
by not capturing seemingly riskier arbitrage. Heuristics 2 and
3 will only detect arbitrage where asset X increases but asset

Trading Volume Arbitrage Volume (%)
Month Uniswap Sushiswap Uniswap Sushiswap

20-09 12.2B 2.2B 215.4M(1.77%) 215.3M(9.73%)
20-10 9.1B 855.0M 89.4M(0.99%) 89.2M(10.44%)
20-11 9.6B 2.0B 117.8M(1.23%) 117.3M(5.92%)
20-12 11.7B 3.0B 153.9M(1.31%) 151.6M(5.01%)
20-01 25.3B 11.7B 452.7M(1.79%) 442.2M(3.77%)
20-02 32.5B 14.2B 730.9M(2.25%) 724.1M(5.11%)

TABLE X: Trading volume, two-point arbitrage on Uniswap,
Sushiswap. For example, in October 2020 arbitrage activities
amount to a total volume of 855.0M USD, 10.44% of the
entire trading volume on Sushiswap (14.2B USD).

to each of the two exchanges (1.74% and 5% of Uni- and
Sushiswap’s total transaction volume, respectively).

To better understand these arbitrage revenues, we deduct the
transaction fees (gas costs) from these transactions. We find
that 131, 896 (80.07%) of the arbitrages are profitable, paying
a total, 4, 348.11 ETH (32 billion gas) in transaction fees.
On average, two-point arbitrage yields an average revenue
of 118, 626 and 25, 730 USD per day for arbitrageurs and
miners, respectively.
Y does not decrease. While we lack quantitative insights
on the heuristic accuracy, we choose to introduce relatively
strict heuristics to reduce our false positive rate at the cost of
underestimating the overall arbitrage transactions.
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