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Abstract—Decentralized Finance (DeFi) is a blockchain-asset-
enabled finance ecosystem with millions of daily USD transaction
volume, billions of locked up USD, as well as a plethora of newly
emerging protocols (for lending, staking, and exchanges). Because
all transactions, user balances, and total value locked in DeFi are
publicly readable, a natural question that arises is: how can we
automatically craft profitable transactions across the intertwined
DeFi platforms?

In this paper, we investigate two methods that allow us to
automatically create profitable DeFi trades, one well-suited to ar-
bitrage and the other applicable to more complicated settings. We
first adopt the Bellman-Ford-Moore algorithm with DEFIPOSER-
ARB and then create logical DeFi protocol models for a theorem
prover in DEFIPOSER-SMT. While DEFIPOSER-ARB focuses
on DeFi transactions that form a cycle and performs very well
for arbitrage, DEFIPOSER-SMT can detect more complicated
profitable transactions. We estimate that DEFIPOSER-ARB and
DEFIPOSER-SMT can generate an average weekly revenue
of 191.48 ETH (76,592 USD) and 72.44 ETH (28,976 USD) re-
spectively, with the highest transaction revenue being 81.31 ETH
(32,524 USD) and 22.40 ETH (8,960 USD) respectively. We
further show that DEFIPOSER-SMT finds the known economic
bZx attack from February 2020, which yields 0.48M USD. Our
forensic investigations show that this opportunity existed for 69
days and could have yielded more revenue if exploited one day
earlier. Our evaluation spans 150 days, given 96 DeFi protocol
actions, and 25 assets.

Looking beyond the financial gains mentioned above, forks
deteriorate the blockchain consensus security, as they increase
the risks of double-spending and selfish mining. We explore
the implications of DEFIPOSER-ARB and DEFIPOSER-SMT
on blockchain consensus. Specifically, we show that the trades
identified by our tools exceed the Ethereum block reward by
up to 874×. Given optimal adversarial strategies provided by a
Markov Decision Process (MDP), we quantify the value threshold
at which a profitable transaction qualifies as Miner Extractable
Value (MEV) and would incentivize MEV-aware miners to fork
the blockchain. For instance, we find that on Ethereum, a miner
with a hash rate of 10% would fork the blockchain if an MEV
opportunity exceeds 4× the block reward.

I. INTRODUCTION

Blockchain-based decentralized finance protocols (com-
monly referred to as DeFi) have attracted a recent surge
in popularity and value stored exceeding 13 billion USD.
The currently most popular DeFi platforms are based on the
Ethereum blockchain and its system of smart contracts, which
regularly gives nascence to new applications, mirrored and
inspired by the traditional centralized finance system. Exam-
ples are asset exchanges [24], [58], margin trading [3], [24],
lending/borrowing platforms [27], [30], and derivatives [27].
DeFi, moreover, can surprise with novel use-cases such as

Fig. 1: DEFIPOSER-ARB and DEFIPOSER-SMT system
overview. In DEFIPOSER-SMT, we 2© Create logical models,
3© paths are created and trimmed with heuristics and 4©
used within a theorem prover to generate a transaction. In
DEFIPOSER-ARB we 2© build a graph of the blockchain
state, 3© identify negative cycles, 4© perform a local search
and repeat. The transaction with the highest revenue is 4©
concretely evaluated before being mined in the next block.

constant product market maker exchanges [26], [58] and flash
loans — instant loans where the lender bears no risk that the
borrower does not repay the loan [4], [24], [53].

A peculiarity of DeFi platforms is their ability to inter-
operate; e.g., one may borrow a cryptocurrency asset on one
platform, exchange the asset on another, and for instance, lend
the resulting asset on a third system. DeFi’s composability
has led to the emergence of chained trading and arbitrage
opportunities throughout the tightly intertwined DeFi space.
Reasoning about what this easy composition entails is not
particularly simple; on one side, atomic composition allows
to perform risk-free arbitrage — that is to equate asset prices
on different DeFi markets. Arbitrage is a benign and important
endeavor to keep markets synchronized.

On the other side, we have seen multi-million-revenue
trades that cleverly use the technique of flash loans to exploit
economic states in DeFi protocols (e.g., the economic attack
on bZx [3], [53] Harvest Finance [28], Value Defi [23] and
others [5], [55]). While exploiting economic states, however, is
not a security attack in the traditional sense, the practitioners’
community often frames these high-revenue trades as “hacks.”
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Yet, the executing trader follows the rules set forth by the
deployed smart contracts. Irrespective of the framing, liquidity
providers engaging with DeFi experience millions of USD
in unexpected losses. This highlights the need for automated
tools that help protocol designers and liquidity providers to
understand arbitrage and financial implications in general
when engaging with DeFi protocols.

DEFIPOSER-ARB and DEFIPOSER-SMT: This paper
presents two tools (cf. Figure 1) that automatically create
transactions to compose existing DeFi protocols to generate
revenue that can be extracted from the Ethereum ecosystem.
They are designed to run in real-time: at every block, they
can find (and execute) a new profit-generating transaction;
we show how our running time of an unoptimized imple-
mentation requires an average of 6.43 seconds and 5.39 sec-
onds on a recent Ethereum block (for DEFIPOSER-ARB and
DEFIPOSER-SMT respectively), which is below Ethereum’s
average block time of 13.5 seconds [9]. We would like to
point out that DEFIPOSER-ARB and DEFIPOSER-SMT, are
best-effort tools: because the state of the blockchain and DeFi
platforms may change at each block, it is important to operate
in real-time, otherwise found trading opportunities might be
outdated. Therefore, we made the choice of prioritizing exe-
cution speed over completeness, and we do not claim to find
optimal strategies.

To the best of our knowledge, we are the first to provide
automated transaction search mechanisms for composable
DeFi protocols. The main risks for a trader using the tools
that we consider within this work are currency exposure (i.e.,
price volatility risks) and the blockchain transaction fees. We
discover that significant revenue can be generated with less
than 1 ETH of initial capital when using flash loans.

Our contributions are as follows:
• DEFIPOSER-ARB: We build a directed DeFi market

graph and identify negative cycles with the Bellman-
Ford-Moore algorithm. A local search then allows us to
discover parameters for profitable arbitrage transactions
in near-real-time (average of 6.43 seconds per block).

• DEFIPOSER-SMT and Space Reduction: To discover
more demanding trades than arbitrage, we model the DeFi
systems using a state transition model, which we translate
to a logical representation in the Z3 theorem prover.
We introduce heuristics to significantly prune the search
space to achieve a near real-time transaction discovery
(average of 5.39 seconds per block).

• Miner Extractable Value (MEV) and Security: We
show how DEFIPOSER-SMT discovers the economic
attack on bZx, which yields over 0.48M USD, and that
this opportunity window was open for over 69 days.
Given optimal adversarial mining strategies provided by
a Markov Decision Process, we show quantitatively that
MEV opportunities can deteriorate the blockchain secu-
rity. For example, a rational MEV-aware miner with a
hash rate of 10% will fork the blockchain if an MEV
opportunity exceeds 4 times the block reward and the

miner failed to claim the source of MEV.
• Trading Strategy Validation: We validate the trad-

ing strategies discovered by DEFIPOSER-ARB and
DEFIPOSER-SMT on a locally-deployed blockchain that
mirrors the real network. We estimate that the found
strategies yield 4,103.22 ETH (1,641,288 USD) and
1,552.32 ETH (620,928 USD) of profit between the
Ethereum block 9, 100, 000 to 10, 050, 000 (150 days
from December 2019 to May 2020). We demonstrate
that our tools’ capital requirements are minimal: the
majority of the strategies require less than 150.00 ETH
(60,000 USD), and only 0.40 ETH (160 USD) when
using flash loans.

Paper organization: The remainder of the paper is organized
as follows. Section II elaborates on the DeFi background,
discusses stable coins and flash loans. Section III describes
how we encode DeFi protocols into state transition models.
Section IV applies negative cycle detection to find DeFi
arbitrage opportunities. Section V presents our heuristics and
techniques to enable the autonomous discovery of adversar-
ial strategies. Section VI presents our empirical evaluation
and quantitative analysis of the found strategies on previous
Ethereum blockchain blocks. Section VII discusses DEFI-
POSER’s blockchain security implication. We discuss related
works in Section VIII and conclude the paper in Section IX.

II. BACKGROUND

In this section, we outline the required background for DeFi.
For extensive background on blockchains and smart contracts,
we refer the interested reader to [6], [11].

A. Decentralized Finance (DeFi)

Decentralized Finance (DeFi) refers to a financial ecosystem
that is built on top of (permissionless) blockchains [59]. DeFi
supports a multitude of different financial applications [3],
[4], [24], [24], [24], [27], [27], [30], [53], [58]. The current
DeFi landscape is mostly built upon smart contract enabled
blockchains (e.g., Ethereum). We briefly summarize relevant
DeFi platforms.
Automated Market Maker (AMM): In traditional finance,
asset exchanges are usually operated in the form of order
matching. Asks and bids are matched in a centralized limit
order book, typically following the FIFO principle [17]. In
DeFi, such an order matching mechanism would be inefficient
because the number of transactions per second supported by
the underlying blockchain is usually limited. Therefore, AMM
minimizes the number of transactions required to balance an
on-chain asset exchange. AMM allows liquidity providers, the
traders who are willing to provide liquidity to the market,
to deposit assets into a liquidity pool. Liquidity takers then
directly trade against the AMM liquidity pool according to a
predefined pricing mechanism. The constant product AMM is
currently the most common model (adopted by over 66% of
the AMM DEX), where the core idea is to keep the product
of the asset amounts in the liquidity pool constant. Consider a
constant product AMM that trades the asset pair X/Y . x and
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y are the amount of X and Y respectively in the liquidity
pool. A liquidity taker attempts to sell ∆x of X and get
∆y of Y in exchange. The constant product rule stipulates
that x × y = (x + ∆x) × (y − ∆y). Uniswap [58] is the
most dominating constant product AMM with a market capi-
talization of 1.4B USD [52]. Variant AMMs utilize different
pricing formulas, e.g., Bancor [40], while other platforms (e.g.,
Kyber [46]) aggregate AMMs. When receiving an order from
a user, these platforms redirect the order to the AMM, which
provides the best asset price.

Stablecoin: Stablecoins are a class of cryptocurrencies de-
signed to alleviate the blockchain price volatility [49]. The
most salient solution for stabilization is to peg the price of
stablecoins to a less-volatile currency (e.g., USD) [50]. There
exist over 200 stablecoin projects announced since 2014 [2].
Among them, SAI and DAI developed by MakerDAO [30]
have received extensive attention. Both SAI and DAI are
collateral-backed stablecoins. SAI is collateralized solely by
ETH, whereas DAI is an SAI upgrade to support multiple
assets as collateral. At the time of writing, the collateral locked
in MakerDAO amounts to 2.73B USD [52].

Flash Loans: The Ethereum blockchain operates similarly to a
replicated state machine. Transactions trigger state transitions
and provide the input data necessary for the Ethereum Virtual
Machine (EVM) state to change according to rules set by smart
contracts. Interestingly, the EVM state is only affected by a
transaction if the transaction executes without failure. In the
case of a failed transaction, the EVM state is reverted to the
previous state, but the transaction fees are still paid to miners
(as in to avoid Denial of Service attacks). A transaction can
fail due to the following three reasons: Either the transaction
sender did not specify a sufficient amount of transaction fees,
or the transaction does not meet a condition set forth by
the interacting smart contract, or the transaction is conflicting
(e.g., double-spending) with another transaction.

This concept of a state reversion enables the introduction
of flash loans, short-lived loans that execute atomically within
only one blockchain transaction. Within a single transaction,
(i) the loan is taken from a liquidity pool, (ii) the loan is put
to use, and (iii) the loan (plus interest payment) is paid back
to the flash loan pool. If the third condition is not met, i.e.,
the loan plus interests are not paid back, then the entire flash
loan transaction fails. This is equivalent to the case that the
loan was never issued because the EVM state is not modified
out of the result of a failed transaction.

Flash loans, therefore, entail two interesting properties.
First, the lender is guaranteed that the borrower will repay
the loan. If the repayment is not performed, the loan would
not be given. Second, the borrower can technically request any
amount of capital, up to the amount of funds available in a
flash loan pool, given a constant payment which corresponds
to the blockchain transaction fees (about 10 USD for the most
common flash loan providers). The borrower hence can have
access to millions of USD with just a few initial USD and
hence is not exposed to the currency risk of the lent asset.

Fig. 2: Example strategy across three DeFi markets, identified
at Ethereum block 10, 001, 087, which would yield a revenue
of 7.81 ETH (3,124 USD).

III. DEFI MODELING

We proceed to introduce our system, trader, and state
transition model for the interaction between DeFi platforms.
On a high level, our model state consists of the DeFi market
states, as well as the cryptocurrency asset balances of a trader
T. The transitions represent DeFi actions performed by the
trader T on the respective DeFi platforms. The goal of the
trader is to maximize the amount of cryptocurrency assets held.

A. System Model

Our system consists of a blockchain with financial cryp-
tocurrency assets (i.e., coins or tokens). Cryptocurrency as-
sets can be used within DeFi platforms (i.e., markets), such
as exchanges, lending, and borrowing platforms. Each DeFi
platform offers a set of actions, which can be triggered
by a transaction. Actions take an asset as input and yield,
for instance, another asset as output. Multiple actions can
be encapsulated in one transaction and executed atomically
in sequence. A path, is a sequence of actions across DeFi
platforms. We denote as strategy (cf. Figure 2), or transaction,
a path with parameters for each action (such as coin amounts,
etc.). We consider a state of a DeFi market to change whenever
an action manipulates the amount of assets within this DeFi
market. Note that we only consider the blockchain state at
block-height i after the execution of all transactions within a
block i (i.e., we do not consider intermittent block states).

B. Trader Model

We consider a computationally bounded trader (denoted by
T) which is capable of executing transactions (i.e., perform
actions) across a set of DeFi platforms. T’s cryptocurrency
assets are limited by the supply of liquidity available in
public flash loan pools [53]. The trader is capable of read-
ing the blockchain contents but is not expected to observe
unconfirmed blockchain transactions on the network layer. We
assume that the trader is capable of placing a transaction ahead
of other DeFi transactions within a future blockchain block.
Practically, this requires the trader to pay a higher transaction
fee, as most miners appear to order transactions based on gas
price. We assume that the trader is not colluding with a miner,
while this may present an interesting avenue for future work.

We assume that the trader is operating on the blockchain
head, i.e., the most recently mined, valid block, of the re-
spective blockchain. In the case of a Proof-of-Work (PoW)
blockchain, the most recent block shall also be the one with
the most PoW (i.e., the greatest difficulty). For simplicity, we
ignore complications resulting from blockchain forks.
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C. Notation

To ease the understanding of the following paragraphs, we
proceed by introducing the utilized notation.
Assets: The set C denotes the collection of cryptocurrency
assets, which the trader uses to generate trading strategies.
Actions: The set A denotes the collection of actions the trader
selects from the DeFi protocols.
Parameters: The trader T must supply parameters to execute
actions a ∈ A, e.g., the amounts of cryptocurrency assets T
sends to the corresponding DeFi platforms.
Path: A path p ∈ P is a sequence of n non-repeated actions
drawn from A. We denote the power set of all actions with
℘(A), which consists of all subsets of the action set A,
including the empty set. Given a subset K ∈ ℘(A), we denote
the permutations set of K with S(K). The collection of all
paths P can then be defined using Equation 1. Note P consists
of paths of different lengths.

P = ∪℘(A)
K S(K), s.t. ∀p = (a1, a2, ..., an) ∈ P

ai ∈ A,∀i ∈ [1, n]

ai 6= aj ,∀ai, aj ∈ A, i 6= j

(1)

Strategy: A strategy consists a path p ∈ P with n actions,
a list of parameters [x1, . . . , xn] for each action in p, and an
initial state (cf. Equation 4) of the model.
Balance function: Given a strategy with n actions, the balance
function BTi (c) denotes T’s balance for cryptocurrency asset c
after performing the ith action, where 0 ≤ i ≤ n and c ∈ C.
Storage function: K(a) denotes the set of smart contract
storage variable addresses an action a reads from and writes to.
These addresses are identified from the underlying blockchain
runtime environment. We use KT(a) to denote a subset of
K(a), which is only relevant to the trader T.

D. States

We classify the state variables into two categories, the trader
and DeFi states. ST represents the trader’s asset portfolio (cf.
Equation 2). SDeFi is the set of all storage variables T reads
from and writes to, for all the DeFi actions in our model (cf.
Equation 3). The union S of these two categories is the overall
state of our system (cf. Equation 4). Given a strategy with n
actions, the state after performing the ith action, where 0 ≤
i ≤ n is denoted as si, with the initial state s0.

ST = {BT(c) : ∀c ∈ C} (2)

SDeFi = ∪∀a∈AKT(a) (3)

S = ST ∪ SDeFi (4)

E. Transitions

Our state transition function is FT(s ∈ S, a ∈ A, x) → S,
outputs the next state if action a with parameter x is performed
on state s by trader T. Given a strategy with n actions,
where ai and xi represents the ith action and parameter
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Fig. 3: Technical design choices of DEFIPOSER. DEFIPOSER
consists of three components: 1© a path pruning component;
2© a parameter search component, and 3© a strategy combi-
nation/execution component.

respectively, and si represents the state after the ith action.
Equation 5 shows the state transition process of this strategy,
while Equation 6 computes the final state sn when each action
is sequentially applied to s0.

si+1 = FT(si, ai+1, xi+1) (5)

sn = FT(. . .FT(FT(s0, a1, x1), a2, x2) . . .) (6)

F. Objective

We choose an asset b ∈ C as our base cryptocurrency asset.
The objective of the trader T is to find a strategy, such that
the balance of b (cf. Equation 7) is maximized, whereas the
portfolio balances of the trader, except for b, remain the same.

maximisep∈P obj(s0, p) = BTn(b)− BT0 (b)

with constraints: BTn(c) = BTi (c),∀c ∈ C \ b
(7)

G. Base cryptocurrency asset

To identify revenue yielding paths, we make the assumption
that the trader T operates in this work on a single base cryp-
tocurrency asset. Naturally, this can be extended to multiple
base currencies to increase potential financial results.

H. DEFIPOSER Design Choices

Figure 3 shows the high-level design choices of the DEFI-
POSER tools we present in this paper. DEFIPOSER consists
of three components: 1©, a pruning algorithm to filter poten-
tially profitable paths; 2©, a search algorithm which searches
parameters to maximize the revenue of a given path, and 3© a
strategy combination/execution algorithm, which decides how
the found strategies are executed.
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Generally speaking, each instantiation of the different com-
ponents bears its own advantages and disadvantages. For
instance, negative cycle detection only searches cyclic paths,
whereas pruning with heuristics can search for any path
structure. Given a simple path such as a cyclic arbitrage,
we find that local search is faster than the SMT solver (cf.
Figure 12), but does not provide satisfiability proofs. In the
following we present two variants of DEFIPOSER, namely
DEFIPOSER-ARB (cf. Section IV) and DEFIPOSER-SMT
(cf. Section V).

IV. APPLYING NEGATIVE CYCLE DETECTION TO DEFI
ARBITRAGE

Previous works propose negative cycle detection algorithms,
such as the Bellman-Ford-Moore algorithm, to find arbitrage
opportunities [18]. In these algorithms, the exchange markets
are modeled as a directed weighted graph (g). Every negative
cycle in the graph then corresponds to an arbitrage opportunity.

A. Negative Cycle Detection to Detect Arbitrage

We adopt the following notations to translate arbitrage
detection into a negative cycle detection problem.

Nodes: The set N denotes the collection of nodes. Each node
(vertex) represents a different asset (c ∈ C).

Directed edges: The set E denotes the collection of all edges.
An edge ei,j that points from asset ci to cj represents that there
exist a market where the trader T can sell cryptocurrency asset
ci to purchase cryptocurrency asset cj .

Spot price: The spot price pspot
i,j for edge ei,j is the approx-

imated best current price a trader T finds on all DeFi AMM
markets, when selling an arbitrarily small amount (close to 0)
of a cryptocurrency asset ci to purchase cj .

Arbitrage: A path [c1
a1−→ c2 . . . ck−1

ak−1−−−→ ck] consists an
arbitrage opportunity, if pspot

1,2 × . . .× pspot
k−1,k > 1.

Edge weight: To apply negative cycle detection algorithms,
we use the negative log of price wi,j = −log(pspot

i,j ) as the
weights for edge ei,j . An arbitrage opportunity exists if w1,2+
. . .+ wi−1,i < 0.

Path finding: Our objective is to maximize T’s base cryp-
tocurrency asset. An arbitrage cycle, however, may not consist
of the base asset. Therefore, we convert the arbitrage revenue
to the base cryptocurrency asset by the end of the execution.
More concretely, we find all ‘connecting’ markets that support
the conversion between one of the arbitrage assets and the
base cryptocurrency asset. We perform the conversion using
the ‘connecting’ markets with the best price.

B. Negative Cycle Detection Algorithms

Negative cycle detection algorithms combine the shortest
path algorithm with a cycle detection strategy. Cherkassky et
al. [18] studied various combinations of shortest path algo-
rithms (Bellman-Ford-Moore [8], [29], [51], Goldfarb-Hao-
Kai [35], Goldberg-Radzik [33], etc.) and cycle detection
strategies (Walk to the root, Admissible graph search [34],

Algorithm 1: Negative cycle arbitrage detection.
Input:
s0 ← Initial state ; target ← Minimum revenue target
Output: revenuetotal
s ← s0 ; g ← buildGraph(N , E, s) ; revenuetotal ← 0
while hasNegativeCycle(g) do

cycle ← getNegativeCycle(graph)
p ← getPath(cycle)
(revenue, s) ← search(p)
if revenue > target then

revenuetotal ← revenuetotal + revenue
end
g ← buildGraph(N , E, s)

end
return revenuetotal

Function buildGraph(N, E, s ∈ S) is
# fetch the spot price for each e ∈ E
# build the graph g;where wci,cj = −log(pspot

ci,cj )
return g

end
Function hasNegativeCycle(g) is

return (Detects a negative cycle?)
end
Function getPath(cycle) is

p ∈ P connects T’s baseasset with cycle.
return p

end
Function search(p) is

# find the parameters for path p
s’ ← state after executinng the strategy
return (revenue, s’)

end

Subtree traversal [44], etc.) and compared their relative per-
formances. A natural question is whether these cycle detection
algorithms can be directly applied to find profitable transac-
tions in DeFi.

In bid-ask markets, the price does not change if the trade
volume is within the bid/ask size [17]. DeFi AMM exchanges,
however, follow a dynamic price based on the trade volume.
Intuitively, the bigger the transaction size, the worse the
trading price becomes. Hence, our algorithm needs to consider
dynamic price changes and update the graph g after every
action. On a high level, a Bellman-Ford-Moore inspired algo-
rithm repeatedly performs the following steps: (i) Build the
graph g based on the spot prices from the current state s ∈ S;
(ii) Detect arbitrage cycles in the graph g (Bellman-Ford-
Moore); (iii) Build a path based on the negative cycle, and
find the strategy (parameters for the path), finally (iv) Execute
the strategy and update the state s. Algorithm 1 presents the
details of DEFIPOSER-ARB. To find the parameters for a
path, Algorithm 1 gradually increases the amount of base
assets into the path until there is no increase in revenue.

We present DEFIPOSER-ARB’s evaluation in Section VI.

V. DESIGN OF DEFIPOSER-SMT

In this section, we discuss an alternative technique,
DEFIPOSER-SMT, to find profitable transactions in DeFi,
which is more general when compared to DEFIPOSER-ARB.
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More specifically, DEFIPOSER-SMT can operate on non-
cyclic strategies, while DEFIPOSER-ARB cannot. We observe
that profitable DeFi strategies do not necessarily form a
complete cycle. For example, Figure 4a shows the graph
for the economic bZx attack (cf. Section VII). The strategy
requires the trader to send Ether to edge 1 without receiving
any assets in return and to then perform an arbitrage cycle
with edge 2 and 3.

A. Choosing an SMT Solver for DEFIPOSER-SMT

To overcome the aforementioned challenges of non-existent
cycles, we chose to adopt a theorem prover for DEFIPOSER-
SMT’s (cf. Figure 1) design. The theorem prover logically
formulates what a profitable strategy entails to locate concrete
profitable instantiations. We perform systematic path explo-
ration to determine if the model (cf. Section III) satisfies
the provided requirements, similar to other model checking
systems [13], [16], [36], [43], [45], [48], [56], [57].

Our model requires the SMT solver (such as MathSat [14],
Z3 [21], or Coral [54]) to support floating-point arithmetic
because we adopt the theory of real numbers (cf. Section III).
We encode the state transition model in three major steps: (i)
Encode the initial state as a predicate; (ii) iteratively apply state
transition actions, and encode the resulting states after each
action as predicates. Then, (iii) convert the objective function
into a set of constraints to ensure that the value of the trader
portfolio increases by Z, and translate the constraints into
predicates. Note that we rely on an optimization algorithm (cf.
Algorithm 3) to find the highest possible Z. The optimization
process requires solving the same SMT problem with different
initializations of Z (cf. Appendix C for an example).

B. Path Pruning

One bottleneck of model checking is the combinatorial
path explosion problem. We, therefore, prune the paths by
applying the following heuristics. Note that heuristics may
prune profitable strategies, and DEFIPOSER-SMT is therefore
only a best-effort tool.

Heuristic 1: A profitable strategy must consist of more than
one action. That is because, given an initial state S0, a strategy
with only one action will not increase the balance of the base
cryptocurrency asset while keeping the balance of all other
cryptocurrency assets unchanged.

Heuristic 2: A strategy must start with a sequence of entering
actions. An entering action is defined as any action which takes
the base cryptocurrency asset as input.

Heuristic 3: A strategy must end with a sequence of exiting
actions. An exiting action is defined as any action that outputs
the base cryptocurrency asset. Recall that the objective of the
trader is to maximize the amount of base assets held.

Heuristic 4: Apart from the entering actions, an action must
depend on at least one previous action. Conceptually, this is
to avoid a strategy to contain actions that do not interact with
any other actions. Given two actions ai, aj ∈ A, we define that
ai and aj are independent actions, iff. there is no intersection

between KT(ai) and KT(aj) (cf. Equation 8). In other words,
the execution of ai does not affect the execution results of aj ,
no matter what concrete state is given.

ai ⊥⊥ aj ⇐⇒ KT(ai) ∩ KT(aj) = ∅ (8)

Recall that K(a) denotes the set of smart contract storage
variables an action a reads from and writes to, and KT(a)
denotes a subset of K(a), which is relevant to the trader T.
As an example of independence, we assume a1 transacts c1
to c2 using a constant product market M1 with liquidity L1c1

and L1c2 , and a2 transacts c1 to c3 using another constant
product market M2 with liquidity L2c1 and L2c3 . Equation 9
shows the storage variables a1 and a2 reads from and writes
to. a1 and a2 are not independent, as they both read/write
variable T.c1. Therefore, Heuristic 4 does not prune the path
containing a1 and a2.

KT(a1) = {M1.L1c1 ,M1.L1c2 ,T.c1,T.c2}
KT(a2) = {M2.L2c1 ,M2.L2c3 ,T.c1,T.c3}

(9)

Heuristic 5: An action cannot be immediately followed by
another reversing action (i.e., a mirroring action) on the same
DeFi market. For instance, if a1 transacts c1 to c2, and a2
converts c2 to c1 on the same market, then heuristic 5 will
prune all paths that contain a1, a2.
Heuristic 6: A path cannot include any branching. For ex-
ample, a path of 5 actions [c1

a1−→ c2
a2−→ c4, c1

a3−→ c3
a4−→

c4, c4
a5−→ c1] is composed of two paths, [c1

a1−→ c2
a2−→ c4

a5−→
c1] and [c1

a3−→ c3
a4−→ c4

a5−→ c1] (cf. Figure 5a). In our
work, we choose the more profitable path, and discard the
other, because both paths affect the asset c4. In a future work,
it might be interesting to attempt to extract profit from both
paths in an effort to maximize the revenue.
Heuristic 7: A path must not include any loops. For example,
a path [c1

a1−→ c2
a2−→ c3

a3−→ c2
a4−→ c3

a5−→ c1] consists of a
loop between c2 and c3. This path is composed of two sub-
paths, namely [c1

a1−→ c2
a2−→ c3

a5−→ c1] and [c1
a1−→ c2

a4−→
c3

a5−→ c1] (cf. Figure 5b). We again chose the more profitable
path, and discard the other for simplicity. We leave it to future
work to optimize the potential gain.

The efficiency of path pruning can be evaluated across two
dimensions: (i) the number of paths that are pruned, and, (ii)
the reduction in revenue resulting from the heuristic pruning.
To address the former, we show the reduction of the number of
paths due to the heuristics in Table II and discuss these results
further in Section VI-B. Regarding the latter, because we
cannot quantify the optimal revenue due to the combinatorial
explosion of the search space, we, unfortunately, see no avenue
to quantify the reduction in revenue caused by the heuristics.

C. DEFIPOSER-SMT Revenue Optimizer
SMT solvers validate if any initialization of the free vari-

ables would satisfy the requirements defined. One requirement
we specify is to increase the base cryptocurrency asset balance
by a fixed amount. To find the maximum satisfiable revenue,
we chose to use the following optimization algorithm (cf. Al-
gorithm 3). At a high level, to identify a coarse upper and
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ETH WBTC

1. bZx, short ETH for WBTC
price = 0, weight = inf

2. Compound, borrow WBTC with ETH
price = 0.0170 WBTC/ETH, weight = 4.0745

3. Uniswap, trade WBTC for ETH
price = 44.1488 ETH/WBTC, weight = -3.7875

None

(a) Initial state graph.
Cycle weight sum = 4.07− 3.79 = 0.28

ETH WBTC

1. bZx, short ETH for WBTC
price = 0, weight = inf

2. Compound, borrow WBTC with ETH
price = 0.0170 WBTC/ETH, weight = 4.0745

3. Uniswap, trade WBTC for ETH
price = 44.2149 ETH/WBTC, weight = -3.7890 

Send
1 ETH flow

None

(b) Graph after shorting 1 ETH.
Cycle weight sum = 4.07− 3.79 = 0.28

ETH WBTC

1. bZx, short ETH for WBTC
price = 0, weight = inf

2. Compound, borrow WBTC with ETH
price = 0.0170 WBTC/ETH, weight = 4.0745

3. Uniswap, trade WBTC for ETH
price = 110.2139 ETH/WBTC, weight = -4.7024 

Send
100 ETH flow

None

(c) Graph after shorting 1, 000 ETH.
Cycle weight sum = 4.07−4.70 = −0.63

Fig. 4: Directed weighted graph for the economic bZx attack on the Ethereum block 9, 462, 687. Shorting ETH for WBTC on
bZx does not return assets to the trader T, and the action, therefore, does not point to any cryptocurrency assets. Graph 4a
has no arbitrage opportunity on the WBTC/ETH market (0.0170 × 44.1488 = 0.75 ≤ 1). In Graph 4b and 4c, the weights
change (ETH/WBTC price) after the trader increases the flow (in ETH) to the bZx market because bZx’s price depends on the
Uniswap price. The graph is hence dynamic [15], i.e., the weights need to be updated after each action. The action encoding
of DEFIPOSER-SMT models the bZx’s price dependence on Uniswap. Note that the bZx attack does not violate Heuristic 6,
because action 1 does not return any asset nor forms a sub-path (cf. Figure 15).

c1

c2
c4

c3

c5
a1
a3

a2
a4

a5

c1

c2
c4 c5

a1 a2 a5

c1 c4
c3

c5a3 a4
a5

Path:

Sub-path 1:

Sub-path 2:

(a) Heuristic 6 - Branching example
c1 c2 c3a1 a2 a3 c2 a5c3a4 c1

c1 c2 c3a1 a2 a5 c1

c1 a1 c2 a5c3a4 c1

Path:

Sub-path 1:

Sub-path 2:

(b) Heuristic 7 - Looping example

Fig. 5: Example of branching and looping paths.

lower revenue bound, this algorithm first attempts to solve,
given multiples of 10 for the trader revenue. Given these
bounds, we perform a binary search to find the optimal value.

D. Comparing DEFIPOSER-SMT to DEFIPOSER-ARB

Table I summarizes our comparison between DEFIPOSER-
SMT and DEFIPOSER-ARB. While arbitrage opportunities
appear plentiful, DEFIPOSER-ARB cannot capture non-cyclic
transactions such as the bZx case. Because DEFIPOSER-
SMT can encode any arbitrary strategy as an SMT prob-
lem, we argue that it is a more generic tool, as long as
the underlying SMT solver can find a solution fast enough.
We would like to stress again that both tools DEFIPOSER-
ARB and DEFIPOSER-SMT do not provide optimal solutions.
DEFIPOSER-ARB greedily searches for arbitrage and extracts
revenue as each opportunity arises. To show that DEFIPOSER-
ARB does not find optimal solutions, we provide the following
example at block 9, 819, 643. Here, DEFIPOSER-SMT finds
two opportunities:
Strategy 1 [ETH

Bancor−−−−−→ BNT
Bancor−−−−−→ MKR

Uniswap−−−−−−→
ETH] with 0.20 ETH of revenue.

Strategy 2 [ETH
Uniswap−−−−−−→ BAT

Bancor−−−−−→ BNT
Bancor−−−−−→

MKR
Uniswap−−−−−−→ ETH] with 0.11 ETH of revenue.

DEFIPOSER-SMT will only execute strategy 1. DEFIPOSER-
ARB, however, finds and executes strategy 2 first to extract
0.11 ETH. After executing strategy 2 and updating the graph,
strategy 1 is no longer profitable. Therefore, DEFIPOSER-
ARB only extracts a revenue of 0.11 ETH in this block.
Note that DEFIPOSER-SMT provides proof of satisfiable/un-
satisfiable revenue targets for each considered path. However,
DEFIPOSER-SMT remains a best-effort tool because the
heuristics prune paths that may be profitable. Contrary to
DEFIPOSER-ARB, DEFIPOSER-SMT does not merge paths.

E. Limitations

We elaborate on a few limitations of our work.

State dependency: In this study, we focus on block-level state
dependencies (cf. Appendix G), i.e., we consider a state to only
change when a new block is mined. In practice, a DeFi state
can change several times within the same blockchain block
(as several transactions can trade on a DeFi platform within
a block). Our assumption hence may cause us to not consider
potentially profitable trades. An alternative approach to study
state dependency, which we leave to future work, is to perform
a transaction-level analysis. Such an analysis would assume
that the trader observes the peer-to-peer network layer of the
Ethereum network. Based on the information of transactions
in the memory pool (the pool of unconfirmed transactions), the
transaction order and state changes in the next block could be
estimated ahead of the block being mined.

Scalability: One problem of DEFIPOSER is the combinatorial
path explosion. To mitigate this problem, heuristics reduce
the path space, which only needs to be executed once. For
every new block, DEFIPOSER can parallelize the parameter
search process to find the most profitable paths. A limitation
of negative cycle detection is that it has to search for negative
cycles before starting to search parameters. The graph needs
to be updated after executing every strategy. This is difficult
to parallelize and limits the system’s real-time capability,
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DEFIPOSER-ARB DEFIPOSER-SMT

Path generation Bellman-Ford-Moore, Walk to the root; No acyclic paths Pruning with heuristics; Any paths within the heuristics
Path selection Combines multiple sub-paths Selects the highest revenue path
Manual DeFi modeling Not required Required
Captures non-cyclic strategies No Yes (e.g., bZx)
Optimally chosen parameters No Yes (subject to inaccuracy of binary search)
Maximum Revenue 81.31 ETH (32,524 USD) 22.40 ETH (8,960 USD)
Total Revenue (over 150 days) 4,103.22 ETH (1,641,288 USD) 1,552.32 ETH (620,928 USD)
Lines of code (Python) 300 2, 300

TABLE I: High-level comparison between DEFIPOSER-ARB and DEFIPOSER-SMT.

especially when there are multiple negative cycles, or the cycle
length is long.

Manual Modeling and Code Complexity: DEFIPOSER-
ARB only needs to be aware of the spot price of each market
and treats the underlying smart contracts and exchange pro-
tocols as a black box while greedily exploring opportunities.
DEFIPOSER-SMT, however, requires the manual translation
of the objective function into an SMT problem. This requires
to encode the state transitions into a group of predicates (cf.
Appendix C). The modeling process not only increases the
code complexity (cf. Table I) but also causes inaccuracies in
the found solutions and therefore requires a validation process
through, e.g., concrete execution.

Approximated Revenue: To avoid double-counting revenue
when a profitable path exists over multiple blocks, we apply
a state dependency analysis and only exploit paths with a
state change (cf. Section G). However, DEFIPOSER’s reported
revenue is not accurate because: (i) We work on historical
blockchain states. In practice, the profitability of DEFIPOSER
will be affected by the underlying blockchain’s network layer;
(ii) For simplicity within this work, we assume that DEFI-
POSER does not change other market participants’ behavior.
In practice, other traders are likely to monitor our activity and
adjust their trading strategy accordingly.

Multiple Traders: Within this work, we only consider a
single trader using DEFIPOSER. Zhou et al. [61] simulated the
outcome of competing transactions from several traders under
a reactive counter-bidding strategy. We believe that those re-
sults translate over to MEV when multiple traders (specifically
non-miners) compete over DEFIPOSER transactions. Zhou et
al. [61]’s results suggest that the total revenue will be divided
among the competing traders.

VI. EXPERIMENTAL EVALUATION

To query the Ethereum blockchain, we set up a full
archive Geth1 node (i.e., a node which stores all intermediate
blockchain state transitions) on a AMD Ryzen Threadripper
3990 X Processor (4.3 GHz, 64 cores), 4x2 TB NVMe SSD
RAID 0 and 256 GB RAM. We perform the concrete exe-
cution with a custom py-evm2, which can fork the Ethereum
blockchain at any given block height. To simplify our exper-
imental complexity, we do not consider trades which yield

1https://github.com/ethereum/go-ethereum
2https://github.com/ethereum/py-evm

below 0.10 ETH (40 USD) and are aware that this potentially
reduces the resulting financial gain.

We select 96 actions from the Uniswap, Bancor, and Mak-
erDAO, with a total of 25 assets (cf. Table III and IV in Ap-
pendix). To enable action chaining, all considered assets trade
on Uniswap and Bancor, while SAI and DAI are convertible
on MakerDAO. The total value of assets on the three platforms
sums up to 3.3 billion USD, which corresponds to 82% of the
total USD value locked in DeFi as of May 2020.

Both DEFIPOSER-ARB and DEFIPOSER-SMT apply
dependency-based state reduction. Stationary blockchain states
are identified and skipped to avoid redundant computation and
double counting of revenue.

A. DEFIPOSER-ARB

We translate the 25 assets and 96 actions into a graph
with 25 nodes and 94 edges. Each node in the graph represents
a cryptocurrency asset. For each edge ei,j pointing from asset
ci to cj , we find all markets with asset ci as input, and output
asset cj . Each edge’s weight is derived using the highest price
found among all supporting markets, or 0 if there is no market.
We then follow Algorithm 1 to greedily extract arbitrage
revenue as soon as one negative cycle is found. We use the
BFCF (Bellman-Ford-Moore, Walk to the root) algorithm to
find negative cycles, which operates in O(|N2| · |E|). For each
arbitrage opportunity, DEFIPOSER-ARB gradually increases
the input parameter (amount of base cryptocurrency asset)
until the revenue ceases to increase.

B. DEFIPOSER-SMT

We translate DeFi states into Z3 [21] as constraints on
state symbolic variables (cf. Section III). We symbolically
encode all variables using floats instead of integers because
the EVM only supports integers. Most DeFi smart contracts
express floats as integers by multiplying floats with a large
factor. Division and power are, therefore, estimated using
integer math. This practice may introduce a bias in our state
and transition functions. Due to such model inaccuracies, we
proceed to concrete execution (i.e., real-world smart contract
execution on the EVM) to avoid false positives and validate
our result.

An exhaustive search over the total action space is infea-
sible. Therefore, we apply path pruning (cf. Section V-B) to
discard irrelevant paths.

Path Discovery and Pruning: The 96 DeFi actions (cf.
Table IV in Appendix) result in 9.92 × 10149 possible paths
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Path length Before After

2 9, 120 2
3 857, 280 90
4 79, 727, 040 466
5 7, 334, 887, 680 42

Total 7, 415, 481, 120 600

TABLE II: Results of path pruning after applying the heuristics
from Section V-B. In total, 600 paths remain, with the major-
ity (77.67%) consisting of 4 actions. For each path length, the
heuristics remove at least 99.98% of the strategies.

Fig. 6: We consider each blockchain block as an independent
state representation of the DeFi platform markets. Only if a
DeFi market changes in state, we need to re-engage the SMT
solver for the affected paths only.

without repeating actions, which is an impractical space to
evaluate. Table II hence illustrates the impact of our heuristics
on paths of various lengths. We observe a significant reduction
of at least 99.98% per path length of the total number of
considered paths, resulting in only 600 remaining paths. The
majority of paths (77.67%) consist of 4 actions, while the
shortest paths count 2 actions, and the longest 5 actions.
Although we do not enforce a constraint on the maximum
number of actions, all paths with more than 5 actions failed
to pass our heuristics.

Action Dependency: In the following, we present a concrete
example of determining the dependency between two actions.
The first action aUniswap transacts ETH to SAI using the
Uniswap SAI market. The second action aBancor transacts
BNT to SAI using the Bancor SAI contract. Equation 10 and
Equation 11 show the relevant storage variables, respectively.
These two actions are not independent, as they both modify
the trader’s balance in the SAI contract.
KT(aUniswap) = {<UniswapSAI>.ETH,

<SAI>.balance of UniswapSAI,
<Trader>.ETH,
<SAI>.balance of trader}

(10)

KT(aBancor) = {<BNT>.balance of BancorSAI
<SAI>.balance of BancorSAI
<BNT>.balance of trader
<SAI>.balance of trader}

(11)

Dependency-based Blockchain State Reduction: If a DeFi
state does not change across a number of blockchain blocks,
the same SMT solver computation is not re-engaged (cf.

Figure 6). Algorithm 2 specifies the algorithm we apply to
automate the dependency-based blockchain state reduction.
Figure 15 in the Appendix shows a timeline analysis of the
state dependencies for all considered assets. We observe that
ETH experiences the most state changes with over 950, 000
blocks (36.76%), followed by DAI (14.62%).

Algorithm 2: Block state dependency analysis.
Input:
p = (a1, a2, . . .) ∈ P ← Path ; b ← Block number
Output: Has a state change
foreach a ∈ p do

foreach s ∈ KT(a) do
if fetch(s, b) 6= fetch(s, b - 1) then

return True
end

end
end
return False

Function fetch(s, b) is
return (Concrete value for storage variable address s on

block b)
end

C. DEFIPOSER-ARB and DEFIPOSER-SMT: Revenue

We validate both DEFIPOSER designs on past blockchain
data from block 9, 100, 000 to block 10, 050, 000, over a
total of 150 days. We visualize the distribution of traders’
revenue for DEFIPOSER-SMT in Figure 8. DEFIPOSER-
SMT found 13, 317 strategies consisted of 2 to 5 actions.
In total DEFIPOSER-SMT yields a total of 1,552.32 ETH
(620,928 USD), and we observe that the most profitable
strategies consist of 3 actions, where the highest revenue
yielded amounts to 22.40 ETH (8,960 USD). Similarly,
Figure 9 visualizes the distribution of traders’ revenue for
DEFIPOSER-ARB. Recall that DEFIPOSER-ARB greedily
combine multiple paths into a single strategy. We observe
that the revenue increases as the number of paths in-
creases, with the highest revenue amounting to 81.31 ETH
(32,524 USD). In total, DEFIPOSER-ARB finds 2, 709 strate-
gies and yields 4,103.22 ETH (1,641,288 USD).

We visualize in Figure 7 the revenue generated by
DEFIPOSER-SMT and DEFIPOSER-ARB as a function of
the initial capital. If a trader owns the base asset (e.g., ETH),
most strategies require less than 150 ETH. Only 10 strategies
require more than 100 ETH for DEFIPOSER-SMT, and only 7
strategies require more than 150 ETH for DEFIPOSER-ARB.
This capital requirement is reduced to less than 1.00 ETH
(400 USD) when using flash loans (cf. Figure 7 (b, d)).

Figure 10a shows how our concrete execution valida-
tion over 150 days yields consistent revenue for both
tools. The concrete execution estimates a weekly rev-
enue of 191.48 ETH (76,592 USD) for DEFIPOSER-ARB
and 72.44 ETH (28,976 USD) for DEFIPOSER-SMT. For
DEFIPOSER-SMT, our validation estimates a total revenue

9



0 25 50 75 100 125 150 175
Initial capital in ETH

0

20

R
ev

en
ue

in
E

T
H

(a) DEFIPOSER-SMT without flash loans.
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(b) DEFIPOSER-SMT with flash loans.
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(c) DEFIPOSER-ARB without flash loans.
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(d) DEFIPOSER-ARB with flash loans.

Fig. 7: Revenue as a function of the initial capital, in ETH with and without flash loans for DEFIPOSER-ARB (total of 2, 709
found strategies) and DEFIPOSER-SMT (total of 1, 556 found strategies).
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Validated most profitable strategy per block(total of 161.3 ETH)

Fig. 8: Analytical distribution of the trader’s revenue. The
majority of the most profitable strategies consist of 3 actions.
Because DEFIPOSER-SMT requires manual modeling, the
revenues discovered by Z3 are not accurate, and thus the
number of discovered strategies (yellow) are less than the
profitable strategies (blue). We use concrete execution to
validate the strategies from Z3.

of 1,552.32 ETH (620,928 USD) out of 3,577.14 ETH
(1,430,856 USD) (i.e., 40% of the Z3 indicated revenue is
validated in practice).
Cost Analysis: The trader’s principal costs are the blockchain
transaction fees (e.g., gas in Ethereum), which remain below
the revenue yielded by the strategies we validated (cf. Fig-
ure 11). Note that a trading strategy may fail if the underlying
market state changes before its execution. Therefore, we
assume that the trader adopts the gas price of 32 GWei, which
is highly volatile, but the recommended fast transaction gas
price at the time of writing. Summarizing, the execution of
all strategies costs less than 0.05 ETH, which warrants all
strategies to be profitable.
Performance Analysis: Our tools must find trades within
the average Ethereum block time of 13.5 ± 0.12 seconds [9]
to be applicable in real-time. Assuming a network propaga-
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Number of paths executed per strategy

10−1

100

101

102

R
ev

en
ue

of
th

e
tr

ad
er

in
E

T
H

Revenue (in ETH)

Most profitable path per strategy

Fig. 9: Distribution of the trader’s revenue using DEFIPOSER-
ARB. We observe that the revenue increases as the number of
paths increases. We also visualize the distribution of the most
profitable sub-path (orange) for every strategy. Intuitively, the
more paths DEFIPOSER-ARB try to combine, the higher the
revenue.

tion latency of roughly three seconds towards miners in the
blockchain P2P network [22], our tools must generate trans-
actions within at most 10.5 seconds. Figure 12 shows the de-
tailed execution speed of DEFIPOSER-ARB and DEFIPOSER-
SMT on an AMD Ryzen Threadripper 3990 X Processor
(4.3 GHz, 64 cores) CPU. For new block states, we measure a
total average computing time of 6.43 seconds and 5.39 seconds
per block, respectively.

We further group the strategies detected by DEFIPOSER-
ARB based on the number of negative cycles and compare
the respective analysis time (cf. Figure 13). We find that
DEFIPOSER-ARB exceeds our estimated time limit (13.5 −
3 = 10.5 seconds) when exploiting more than 6 cycles. The
higher the total number of negative cycles, the more likely
DEFIPOSER-ARB misses the most profitable opportunity.
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(a) Cumulative revenue over time (150 days), found by DEFIPOSER-SMT and DEFIPOSER-ARB, and validated via concrete execution.

(b) Strategies detected and validated by DEFIPOSER-SMT. (c) Strategies validated by DEFIPOSER-ARB.

Fig. 10: Revenue and transaction fees analysis over time, measured in blocks.

VII. PROFITABLE TRANSACTIONS AND BLOCKCHAIN
SECURITY

In this section, we show that DEFIPOSER-SMT is capa-
ble of identifying the economic bZx attack from February
2020 [53] and provide forensic insights into the event. Given
optimal adversarial strategies provided by an MDP, we then
quantify whether an MEV opportunity will cause a rational
miner to create a blockchain fork.

A. Economic bZx Attack

On the 15th of February, 2020, a trader performed a
pump and arbitrage attack on the margin trading platform
bZx3. The core of this trade was a pump and arbitrage
involving four DeFi platforms atomically executed in one
single transaction. As a previous study shows, this trade
resulted in in 4,337.62 ETH (1,735,048 USD) loss from
bZx loan providers, where the trader gained 1,193.69 ETH
(477,476 USD) in total [53].

Attack Window: To gain deeper insights into this DeFi
composability event, we extend DEFIPOSER-SMT with two
additional actions: (i) borrow WBTC with ETH on compound
finance; (ii) short ETH for WBTC on bZx. We replayed
DEFIPOSER-SMT on historical blockchain data by starting
at the creation of the bZx’s margin short smart contract (cf.
Figure 16). Surprisingly, the bZx attack window lasted for 69
days until it was openly exploited. DEFIPOSER-SMT finds
that the attack yielded the highest revenue of 2,291.02 ETH

3transaction id: 0xb5c8bd9430b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd0
32f768fc5219838

(916,408 USD) at block 9, 482, 670, which is about one day
before the attack occurred.

B. MEV, an MDP and Optimal Adversarial Strategies

The economic bZx attack revenue exceeds the aver-
age Ethereum block reward4 by a factor of 874×. After
bZx, the other most profitable validated strategies found by
DEFIPOSER-ARB and DEFIPOSER-SMT exceed the block
reward by a factor of 31× and 8.5× respectively. In this
section, we quantify the value at which an MEV-aware miner
would exploit an MEV opportunity by forking the blockchain.
Markov Decision Process: A Markov Decision Process is
a single-player decision process that allows identifying the
optimal strategies for an encoded decision problem. In this
work, we adopt the state transition and reward matrix of the
PoW double-spending MDP of Gervais et al. [31]. Note that
the MDP we use does not consider uncle rewards.

We observe that conceptually, an MEV opportunity is equiv-
alent to a double-spending opportunity: if an MEV opportunity
is mined by an honest miner, and an adversarial miner aims
to claim the MEV opportunity, the MEV miner will need to
outrun the honest chain with a fork. The MEV miner will
hence want to follow the optimal adversarial strategies given
by the MDP, which advises whether to fork or not to fork the
blockchain depending on the MEV value.
Threat Model: We assume a rational and computationally
bounded adversary. Because MDP’s are single-player decision
problems, we assume the existence of only one adversarial

4At the time of writing, the average Ethereum block reward is 2.62 ETH
(https://bitinfocharts.com/ethereum/)
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Fig. 11: Distribution of revenue and transaction cost based
on concrete execution on the EVM for DEFIPOSER-SMT
and DEFIPOSER-ARB. The revenue outpaces the transaction
costs, which are higher for DEFIPOSER-ARB because the
found strategies often consist of more cycles (arbitrage op-
portunities).
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Fig. 12: Analysis time distribution to detect a profitable strat-
egy on DEFIPOSER-SMT and DEFIPOSER-ARB. For most
strategies the search and validation process remains below the
average Ethereum block time of 13.5± 0.12 seconds.

miner willing to exploit MEV. We parametrize the miner
with a hash rate α ∈]0, 0.5[, while the remaining non-MEV
miners have a hash rate of 1 − α. We ignore the existence
of eclipse attacks (ω = 0) and assume the weakest possible
network propagation parameter of the adversary (γ = 0). We
parametrize the MDP with the stale block rate of the Ethereum
blockchain at the time of writing. By crawling the number of
uncle blocks (from the block 9.1M to 10.5M), we approximate
the stale block rate to rs = 5.72%. We set the mining costs
to match the hash rate of the MEV miner (cm = α).
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Fig. 13: The analysis time of DEFIPOSER-ARB exceeds
our estimated time limit (taking into consideration block
time and transaction network propagation to miners), when
DEFIPOSER-ARB exploits more than 6 cycles.

Exploit or not exploit MEV? Each time an MEV opportunity
arises on the network layer, we assume that the honest miner
succeeds in mining the MEV opportunity, and the MEV miner
fails to receive the reward initially. The MEV miner, therefore,
needs to decide whether to start to mine on a private chain,
where he claims the MEV opportunity. Note that the MDP’s
exit state can only be reached when the MEV miner mined
a private chain that is longer than the honest chain (la > lh)
given k = 1 (la > k). Depending on the MEV value, the
optimal strategy π might advise against forking the chain to
attempt to claim the MEV reward. We quantify the minimal
MEV value MEVv , such that MEVv is strictly larger than
the reward from honest mining (cf. Equation 13). We denote
h is the process of mining honestly.

P = (α, γ, rs, k, ω, cm) (12)

MEVv = min{MEVv|∃π ∈ A : R(π, P,MEVv) > R(h, P )}
(13)

To solve the MEV MDP for the optimal strategies, we use
the code of [31]5 and reparametrize given the current Ethereum
stale block rate (rs = 5.72%). We further set k = 1, γ = 0,
ω = 0 and the cut-off value (the maximum length of la and
lh) to 20 blocks. Similar to [31], we apply a binary search
to find the lowest value for MEVv in units of block rewards,
given a margin of error of 0.1.
Results: We visualize our findings in Figure 14, which shows
that for an MEV miner with 10% hash rate, on Ethereum
(stale block rate of 5.72%), MEVv equals to 4. We conclude
that in this case, if an MEV opportunity yields at least a
reward that is 3 times higher than the block reward, then
an MEV miner which follows the optimal strategies will
fork the blockchain. A fork of the blockchain deteriorates
the blockchain’s security as it increases the risks of double-
spending and selfish mining [31].
Multiple MEV Miner: Our MDP model does not allow us to
draw conclusions on the dynamics under multiple independent
MEV miners. We hence can only speculate about the outcome

5https://github.com/arthurgervais/pow_mdp

12

https://github.com/arthurgervais/pow_mdp


0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%
Stale block rate

0x

10x

20x

30x

40x

50x
M

E
V

th
re

sh
ol

d
(i

n
bl

o
ck

re
w

ar
ds

)

es
ti

m
at

ed
E

th
er

eu
m

st
al

e
bl

o
ck

ra
te

DeFiPoser-ARB maximum revenue validated
81.31 ETH, 31x average Ethereum block reward

DeFiPoser-SMT maximum revenue validated
22.40 ETH, 8.5x average Ethereum block reward
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Fig. 14: Minimum MEV value in terms of block rewards to
fork a PoW blockchain, given by optimal adversarial strategies
of the MDP. For instance, on Ethereum (rs = 5.72%), a miner
with 10% hash rate will engage to fork the chain to exploit an
MEV opportunity, if the adversary follows the optimal strategy
and the MEV opportunity yields more than 4 block rewards.

and leave a simulation to future work. We can imagine that
multiple miners either collaborate to share an MEV profit
(which falls back to our MDP game of one adversary), or
the miners would compete among each other, which is likely
to exacerbate the fork rate and hence further deteriorates the
blockchain consensus security.

VIII. RELATED WORK

While the research literature of blockchain span over 10
years, DeFi is a relatively recent area with fewer works.

DeFi: There is a growing body of literature focusing on the
security of the DeFi ecosystem. Blockchain front-running in
exchanges, games, gambling, mixer, the network layer, and
name services is soundly studied [1], [12], [20], [25], [32],
[42], [47], [61]. Daian et al. [20] demonstrate a thorough
analysis of profiting from opportunities provided by trans-
action ordering. Xu et al. [60] presents a detailed study of
a specific market manipulation scheme, pump-and-dump, and
build a prediction model that estimates the pump likelihood of
each coin. Gudgeon et al. [37] explore the possibility of a DeFi
crisis due to the design weakness of DeFi protocols and present
a stress testing framework. Qin et al. [53] investigate DeFi
attacks through flash loans and how to optimize their profit.
We remark that the optimization solution presented in [53]
only applies to previously fixed attack vectors, while this work
considers the composability of DeFi protocols.

Smart Contract Analysis: Besides the above-mentioned
works on DeFi, many studies on the vulnerability discovery
of smart contracts are related to our work [10], [13], [16],
[19], [36], [38], [39], [41], [43], [45], [48], [56], [57]. Tradi-
tional smart contract vulnerabilities examined in related work
include, for instance, re-entrancy attack, unhandled exceptions,
locked ether, overflow [48]. To the best of our knowledge, no

analysis tool has yet considered the problem of a composability
analysis as we’ve performed.
Model Checking: Model-checking is another viable method
to verify the security of smart contracts. Model-checking
examines all possible states in a brute-force manner [7]
and performs systematic exhaustive exploration for checking
whether a finite transition machine model of a system meets
appropriate specifications [13], [16], [36], [43], [45], [48],
[56], [57]. One of the main limitations of model-checking
is the exponential growth of the number of possible states,
resulting in unsolvability for complex contracts.

IX. CONCLUSIONS

This paper presents two practical approaches that automat-
ically extract revenue from the intertwined mesh of decentral-
ized finance protocols. The first technique, DEFIPOSER-ARB,
is well-suited for arbitrage, and the second, DEFIPOSER-
SMT, can also find acyclic opportunities. When evaluated
over a span of 150 days with 96 DeFi actions and 25
cryptocurrency assets, DEFIPOSER-ARB and DEFIPOSER-
SMT are estimated to generate an average weekly revenue
of 191.48 ETH (76,592 USD) and 72.44 ETH (28,976 USD),
with the highest transaction being 81.31 ETH (32,524 USD)
and 22.40 ETH (8,960 USD), respectively.

Our techniques apply to a real-time operation on
blockchains with reasonably fast inter-block times (such as
Ethereum), with an average search of 6.43 seconds and 5.39
seconds per block for DEFIPOSER-ARB and DEFIPOSER-
SMT, respectively, using a relatively unoptimized implemen-
tation. We find that the capital requirements to extract the
found revenues are minimal: the majority of strategies pro-
duced require less than 150.00 ETH (60,000 USD), without,
and less than 1.00 ETH (400 USD) with flash loans.

We quantitatively demonstrate some troubling security im-
plications of profitable transactions on the blockchain con-
sensus. Given optimal adversarial strategies provided by a
Markov Decision Process, we quantify the threshold value at
which an MEV-aware rational miner will fork the blockchain
if the miner does not succeed in claiming an unconfirmed
MEV opportunity first. For example, on the current Ethereum
network, a 10% hash rate miner will fork the chain if an
MEV opportunity exceeds 4 block rewards. As a comparison,
the bZx opportunity exceeded the Ethereum block reward by
a factor of 874×! Our work hence quantifies the inherent
tension between revenue extraction from profitable transac-
tions and blockchain security. We can generally expect trading
opportunities highlighted in this paper to expand as the DeFi
ecosystem grows and becomes more popular.
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BNT 23,966 2,620,652 144
DAI 68,357 2,155,535 130
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ENJ 52,341 902,471 66
SNT 82,663 868,007 101
KNC 65,018 820,501 73
MKR 20,891 733,845 67

DATA 444,833 588,097 26
MANA 38,276 565,151 77

ANT 22,321 217,657 24
RLC 12,880 209,255 24
RCN 19,831 203,893 24
UBT 10,410 191,153 14
GNO 10,695 170,507 21
RDN 13,842 143,308 16
TKN 5,485 84,912 7

TRST 7,738 71,223 7
AMN 2,593 53,010 3
FXC 2,024 47,906 14
SAN 2,247 36,054 7

AMPL 1,931 31,124 10
HEDG 1,709 30,770 17
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used in our experiments, ordered by the total number of
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APPENDIX A
SUMMARY OF THE ERC-20 CRYPTOCURRENCY ASSETS

We summarize the 24 ERC-20 cryptocurrency assets in
Table III. We observe that for most of the assets, the number of
holders and the number of markets increases with the number
of transfer transactions.

APPENDIX B
SUPPORTED DEFI ACTIONS

We summarize the 96 DeFi actions DEFIPOSER supports in
Table IV. All considered cryptocurrency assets trade on both
the Uniswap and Bancor exchanges. SAI and DAI, in addition,
can be converted to each on MakerDAO.

APPENDIX C
SMT ENCODING EXAMPLE

To ease the understanding of the encoding process between
the State Transition Model and the SMT problem, we consider
in the following a simple strategy with only two actions, and
a trader holding two cryptocurrency assets: a base cryptocur-
rency asset c1, and another cryptocurrency asset c2.

Uniswap ETH RDN BNT GNO
From: To: RDN ETH GNO BNT
ETH AMN ETH RLC BNT HEDG
AMN ETH RLC ETH HEDG BNT
ETH AMPL ETH SAI BNT KNC

AMPL ETH SAI ETH KNC BNT
ETH ANT ETH SAN BNT MANA
ANT ETH SAN ETH MANA BNT
ETH BAT ETH SNT BNT MKR
BAT ETH SNT ETH MKR BNT
ETH BNT ETH TKN BNT POA20
BNT ETH TKN ETH POA20 BNT
ETH DAI ETH TRST BNT RCN
DAI ETH TRST ETH RCN BNT
ETH DATA ETH UBT BNT RDN

DATA ETH UBT ETH RDN BNT
ETH ENJ Bancor BNT RLC
ENJ ETH From: To: RLC BNT
ETH FXC BNT AMN BNT SAI
FXC ETH AMN BNT SAI BNT
ETH GNO BNT AMPL BNT SAN
GNO ETH AMPL BNT SAN BNT
ETH HEDG BNT ANT BNT SNT

HEDG ETH ANT BNT SNT BNT
ETH KNC BNT BAT BNT TKN
KNC ETH BAT BNT TKN BNT
ETH MANA BNT DATA BNT TRST

MANA ETH DATA BNT TRST BNT
ETH MKR BNT ENJ BNT UBT
MKR ETH ENJ BNT UBT BNT
ETH POA20 BNT ETH MakerDAO

POA20 ETH ETH BNT From: To:
ETH RCN BNT FXC DAI SAI
RCN ETH FXC BNT SAI DAI

TABLE IV: List of the supported DeFi actions of DEFIPOSER.

Action a1: Converts x1 amount of c1 to c2, using a constant
product market (cf. Section II-A), with liquidity L1c1 for c1
and L1c2 for c2 (cf. Equation 14).

output amount of c2 = L1c2 − L1c1L1c2

(L1c1 + x1)
(14)

Action a2: Converts x2 amount of c2 back to c1, using another
constant product market, with liquidity L2c1 and L2c2 . Based
on Heuristic 5 (cf. Section V-B), action a2 must use another
market, because otherwise the conversion becomes a reversing
action of a1, which would result in a zero-sum game with a
loss on transaction fees.
Initial state encoding: Equation 15 encodes the state variables
with concrete values, which are fetched from the considered
blockchain state (e.g., the most recent block). This predicate
can also be viewed as the assignment of an initial state.

predicate t1(·) :=

BT0 (c1) = Trader’s initial c1 balance ∧
BT0 (c2) = Trader’s initial c2 balance ∧
L1c10 = Market 1 initial c1 balance ∧
L1c20 = Market 1 initial c2 balance ∧
L2c10 = Market 2 initial c1 balance ∧
L2c20 = Market 2 initial c2 balance

(15)

Action encoding: The following two predicates encode the
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two state transition actions. Equation 16 encodes F(s0, a1, x1)
and Equation 17 encodes F(F(s0, a1, x1), a2, x2). Simply
speaking, predicate t2 transacts cryptocurrency asset c1 to c2,
and predicate t3 converts c2 back to c1.

predicate t2(·) :=

0 ≤ x1 ≤ BT0 (c1) ∧
BT1 (c1) = BT0 (c1)− x1 ∧

BT1 (c2) = BT0 (c2) + L1c20 −
L1c10 L1c20

(L1c10 + x1)
∧

L1c11 = L1c10 + x1 ∧

L1c21 =
L1c10 L1c20

(L1c10 + x1)
∧

L2c11 = L2c10 ∧
L2c21 = L2c20

(16)

predicate t3(·) :=

0 ≤ x2 ≤ BT1 (c2) ∧

BT2 (c1) = BT1 (c1) + L2c11 −
L2c11 L2c21

(L2c21 + x2)
∧

BT2 (c2) = BT1 (c2)− x2 ∧
L1c12 = L1c11 ∧
L1c22 = L1c21 ∧

L2c12 =
L2c11 L2c21

(L2c21 + x2)
∧

L2c22 = L2c21 + x2

(17)

Objective encoding:
We use Z to denote the targeted adversarial revenue. Equa-

tion 18 encodes the objective constraints, ensuring that the
adversarial cryptocurrency asset portfolio increases in value.
Note that we rely on search algorithms (cf. Algorithm 2) to
find the highest possible Z. The optimization process requires
solving the same SMT problem with different concrete initial-
ization of revenue targets Z (predicate t4).

predicate t4(·) :=

BT0 (c1) >= BT2 (c1) + Z ∧
BT0 (c2) = BT2 (c2)

(18)

Free variables and range: Our model only consists of two
free variables (x1, x2) for the simple two action paths. For
a path of arbitrary length n, the corresponding SMT system
consists of n free variables, which are the parameters of each
action. As shown in predicate t2 (cf. Equation 16) and t3 (cf.
Equation 17), the range of free variables are constraint by the
amount of T’s cryptocurrency assets.

SMT problem: By following the above procedures, the state
transition model we presented in Section III is now encoded
as an SMT problem, where we verify if any initialization of
the free variables (x1, x2) satisfies the requirement of t1(·) ∧
t2(·) ∧ t3(·) ∧ t4(·).

Number of
paths SMT
must solve

Number of
blocks

Percentage of
blocks

0-23 0 0%
24 204,901 21.57%
46 609 0.06%
47 12,201 1.28%
48 57,265 6.03%

50-100 35,771 3.77%
>100 3,897 0.41%
total 314,644 33.12%

TABLE V: After we apply the dependency-based blockchain
state reduction we show in this Table the number of paths
the SMT solver must solve. 32.71% of the blockchain blocks
between 9, 100, 000 and 10, 050, 000 have less than 100 “state
changing” paths, allowing to reduce the SMT computation.

Contract Count State change frequency

Uniswap DAI 28,464 27.01%
Bancor ETH 16,466 15.63%
Uniswap UBT 13,623 12.93%
Uniswap MKR 5,984 5.68%
Uniswap SAI 5,195 4.93%
Uniswap BAT 5,090 4.83%
Uniswap KNC 4,141 3.93%
Uniswap DATA 3,546 3.36%
Bancor DATA 2,309 2.19%
Uniswap SNT 2,300 2.18%
Uniswap ANT 1,759 1.67%
Bancor UBT 1,714 1.63%
Bancor ENJ 1,602 1.52%
Uniswap ENJ 1,337 1.27%
Uniswap MANA 1,129 1.07%
Uniswap RLC 1,073 1.02%
Other 9,650 9.16%

TABLE VI: State pruning statistics, showing that the Uniswap
DAI contract experiences the highest state change frequency
(27.01% of blocks).

APPENDIX D
Z3 PATH PRUNING

Table VI illustrates the state change frequency of the top
15 most frequently changed DeFi markets we consider in
this work. The Uniswap DAI market is significantly more
active than the other markets, with a state change frequency
of 27.01% of the blocks, while the majority (78.72%) of
markets experience a frequency below 2% of the blockchain
blocks. Note that every market is only involved in a subset
of the 600 kept strategies after pruning. For example, only 48
out of the 600 strategies involve the Uniswap DAI market.

APPENDIX E
CONCRETE ENCODING EXAMPLE FOR Z3

In this section, we provide a running example to demon-
strate the encoding process of DEFIPOSER-SMT. The ex-
ample performs an arbitrage at block 9, 680, 000, which first
converts ETH to BNT on Bancor and then converts BNT back
to ETH on Uniswap.
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A. Initial state encoding

The initial state encoding consists of the predicates for both
the trader T’s initial balances, as well as the initial states of
the underlying platforms.

# Trader’s initial state.
# We assume the trader holds 1000 ETH at the start.
S0_Attacker[BNT] == 0,
S0_Attacker[ETH] == 1000000000000000000000,

# Initial states of the underlying platforms.
S0_Uniswap[BNT]_eth == 135368255883939133529,
S0_Uniswap[BNT]_erc20 == 108143877658121296155075,
S0_Bancor[ETH]_erc20 == 10936591981278719837125,
S0_Bancor[ETH]_erc20_ratio == 500000,
S0_Bancor[ETH]_bnt == 8792249012668956788248921,
S0_Bancor[ETH]_bnt_ratio == 500000,
S0_Bancor[ETH]_fee == 1000,

B. Action encoding

We encode the two transition actions as predicates. P1 is
the input parameter for action 1 (converts ETH to BNT on
Bancor), and P2 is the input parameter for action 2 (converts
BNT to ETH on Uniswap).

# converts ETH to BNT on Bancor
P1 > 0,
S1_Bancor[ETH]_bnt > 0,
S1_Attacker[BNT] ==

S0_Attacker[BNT] +
(S0_Bancor[ETH]_bnt*
(1 -
(S0_Bancor[ETH]_erc20/(S0_Bancor[ETH]_erc20 + P1))**
(S0_Bancor[ETH]_erc20_ratio/S0_Bancor[ETH]_bnt_ratio))*
(1000000 - S0_Bancor[ETH]_fee)**2)/
1000000000000,

S1_Attacker[ETH] == S0_Attacker[ETH] - P1,
S1_Uniswap[BNT]_eth == S0_Uniswap[BNT]_eth,
S1_Uniswap[BNT]_erc20 == S0_Uniswap[BNT]_erc20,
S1_Bancor[ETH]_bnt ==

S0_Bancor[ETH]_bnt -
(S0_Bancor[ETH]_bnt*
(1 -
(S0_Bancor[ETH]_erc20/(S0_Bancor[ETH]_erc20 + P1))**
(S0_Bancor[ETH]_erc20_ratio/S0_Bancor[ETH]_bnt_ratio))*
(1000000 - S0_Bancor[ETH]_fee)**2)/
1000000000000,

S1_Bancor[ETH]_bnt_ratio == S0_Bancor[ETH]_bnt_ratio,
S1_Bancor[ETH]_erc20_ratio == S0_Bancor[ETH]_erc20_ratio,
S1_Bancor[ETH]_erc20 == S0_Bancor[ETH]_erc20 + P1,
S1_Bancor[ETH]_fee == S0_Bancor[ETH]_fee,

# converts BNT to ETH on Uniswap
S1_Attacker[BNT] >= P2,
P2 > 0,
S2_Attacker[BNT] == S1_Attacker[BNT] - P2,
S2_Attacker[ETH] ==

S1_Attacker[ETH] +
(997*P2*S1_Uniswap[BNT]_eth)/
(S1_Uniswap[BNT]_erc20*1000 + 997*P2),

S2_Uniswap[BNT]_eth ==
S1_Uniswap[BNT]_eth -
(997*P2*S1_Uniswap[BNT]_eth)/
(S1_Uniswap[BNT]_erc20*1000 + 997*P2),

S2_Uniswap[BNT]_erc20 == S1_Uniswap[BNT]_erc20 + P2,
S2_Bancor[ETH]_bnt == S1_Bancor[ETH]_bnt,
S2_Bancor[ETH]_bnt_ratio == S1_Bancor[ETH]_bnt_ratio,
S2_Bancor[ETH]_erc20_ratio == S1_Bancor[ETH]_erc20_ratio,
S2_Bancor[ETH]_erc20 == S1_Bancor[ETH]_erc20,
S2_Bancor[ETH]_fee == S1_Bancor[ETH]_fee,

C. Objective encoding

In this example, we check if it is possible for the trader T
to realize 1 ETH of revenue following this path.

# Objective encoding
S2_Attacker[BNT] == 0,
S2_Attacker[ETH] >= 1001000000000000000000

APPENDIX F
OPTIMIZER FOR THE SMT SOLVER

Algorithm 3 shows how the SMT solver can maximize a
path’s revenue using binary search.

Algorithm 3: Maximize a path’s revenue using SMT
solver and binary search.

Input:
p ← Path
m ← Minimum revenue target
Output: Optimized revenue r
if ¬ isSAT(p, m) then

return 0
else

l← m
u← m× 10

end
while isSAT(p, u) do

l← u
u← u× 10

end
return binarySearch(p, l, u)

Function isSAT(p, r) : bool is
return (Is the path p SAT for the revenue r)

end

Function binarySearch(p, l, u) : float is
Binary search SAT solution on path p, using the lower

bound l and upper bound u on revenue
return (Maximum SAT revenue)

end

APPENDIX G
STATE DEPENDENCY

We visualize the state changes in Figure 15. This figure pro-
vides an intuition to a trader on how active a particular market
is. An asset changes state if a market listing that asset changes
state (i.e., a trader trades the asset). ETH experiences the most
state changes with over 950, 000 blocks (36.76%). After ETH,
we observe that DAI (14.62%) experiences the most frequent
state changes over the 950, 000 blocks we crawled. POA20
has the lowest number of state changes (0.08%). For a trader
who is not able to position its transactions first in a block, the
market activity is relevant because a strategy executed on the
POA20 asset has a higher likelihood to succeed than on an
active DAI market.

APPENDIX H
BZX

Figure 16 shows our attack window analysis of the bZx
attack using DEFIPOSER-SMT.
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Fig. 15: Timeline analysis of the state changes, over 150 days (950, 000 blocks), where every state change is represented with
a colored tick.

Fig. 16: Attack window analysis of the bZx attack. DEFIPOSER-SMT finds the first attack opportunity at block 9, 069, 000
(December 8th 2019). The opportunity lasted for 69 days, until the opportunity was exploited in block 9, 484, 687 (February
15th 2020). We visualize the difference between the profits from Z3 and concrete validation, along with the success rate
(using block bin sizes of 100) of a Z3 strategy passing concrete validation. Note that the bZx loan interest rate formula is
conservatively simplified in the encoding process, which explains why the Z3 anticipated revenue is lower than the concrete
execution yield.
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