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ABSTRACT

Identifying and mitigating vulnerabilities in smart contracts is cru-
cial, especially considering the rapid growth and increasing com-
plexity of Decentralized Finance (DeFi) platforms. To address the
challenges associated with securing these contracts, we introduce a
versatile dynamic analysis framework specifically designed for the
Ethereum Virtual Machine (EVM). This comprehensive framework
focuses on tracking contract executions, capturing valuable runtime
information, while introducing and employing the Execution Prop-
erty Graph (EPG) to propose a unique graph traversal technique
that swiftly detects potential smart contract attacks. Our approach
showcases its efficacy with rapid average graph traversal time per
transaction and high true positive rates. The successful identifi-
cation of a zero-day vulnerability affecting Uniswap highlights
the framework’s potential to effectively uncover smart contract
vulnerabilities in complex DeFi systems.

1 INTRODUCTION

The rapid expansion and increasing complexity of decentralized
finance (DeFi) platforms have amplified the importance of securing
smart contracts to mitigate exploits and financial losses. Contempo-
rary approaches for smart contract security audits typically involve
the collaboration of automated static analysis tools and manual
assessments by security auditors. State-of-the-art static analysis
and symbolic execution tools [8, 17–19, 29, 30] have demonstrated
efficacy in identifying various security bugs, such as reentrancy,
timestamp dependency, and integer overflow/underflow [10]. How-
ever, apart from reentrancy, these vulnerabilities do not account
for the primary reasons behind most smart contract application ex-
ploits [33]. Limitations of these techniques stem from their focus on
contract code rather than contract states and their confined scope
of analysis, typically restricted to a single contract or DeFi proto-
col. Additionally, static analysis may have limitations in providing
in-depth insights into specific attack vectors. As DeFi systems con-
tinue to grow and become more complex, preventing smart contract
attacks becomes an increasingly challenging responsibility. Conse-
quently, postmortem analysis has emerged as a vital aspect of smart
contract security, aiming to comprehend the attack mechanics and
identify vulnerabilities in other contracts or blockchains.

Addressing this challenge necessitates the efficient and in-depth
analysis of attack transactions. Traditional platforms such as ether-
scan.io provide only rudimentary information, insufficient for iden-
tifying the root cause of an attack. While existing dynamic analysis
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solutions demonstrate potential in addressing static analysis limi-
tations, they may focus on specific vulnerabilities only [12, 25] or
lack precise data-flow tracking support [7].

The MonoX blockchain project exemplifies this situation. De-
spite three security audits, the project suffered a successful attack
on November 30, 2021. The culprits exploited two vulnerabilities —
missing access control validation and opportunity of price manip-
ulation (see Appendix A for a comprehensive case study of the
MonoX attack) — which are application-specific and, therefore,
unlikely to be identified through static analysis. Additionally, by
leveraging a combination of these vulnerabilities, the attackers fur-
ther complicated detection during manual review processes. Due to
the limited extensibility, existing dynamic analysis techniques for
smart contracts [12, 25] may not be readily adaptable for analyzing
the MonoX attack.

To bridge these gaps, we introduce Clue, a versatile dynamic
analysis framework for smart contracts on the Ethereum Virtual
Machine (EVM). Clue is designed to track smart contract execu-
tions and collect valuable runtime information, such as dynamic
data, control, and asset flow, providing comprehensive transac-
tion analysis. Leveraging the Execution Property Graph (EPG), a
graphic representation of smart contract executions introduced in
this work, we propose a graph traversal technique that rapidly ex-
tracts potential smart contract attacks from the low-level graphical
representation generated by Clue. Our methodology, centered on
the EPG representation, enables concise descriptions and identifi-
cation of contract vulnerabilities in a more precise and effective
manner. The contributions of our work unfold as follows.

• We develop a dynamic smart contract bytecode analysis frame-
work, Clue, specifically designed for the EVM. Its purpose is to
track smart contract executions and gather runtime information
such as dynamic data, control, and asset flow. We also introduce
the EPG — a comprehensive representation that captures the
behavior of smart contract executions.

• Leveraging the EPG, we propose a graph traversal technique
that swiftly identifies potential smart contract attacks. This ap-
proach extracts semantic information from the low-level graph-
ical representation of an EPG in a transaction under analysis,
thereby automating the detection of malicious patterns. The EPG
and graph traversal process do not require prior knowledge of
the source code, and can seamlessly integrate domain-specific
knowledge of analyzed smart contracts to improve vulnerability
identification. We implement and assess three graph traversal in-
stances, specifically addressing reentrancy, faulty access control,
and price manipulation vulnerabilities. Our evaluation, utilizing
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Figure 1: High-level architecture of Clue. Clue offers support for both online and offline modes. The online mode enables

real-time analysis of unconfirmed transactions, while the offline mode facilitates postmortem analysis. Central to Clue is an

EVM emulator, which emulates and tracks the execution of the EVM. Clue allows extracting the data, control, asset flows from

a transaction and further constructing EPG (cf. Section 4) efficiently. Based on the EPG, we devise a graph traversal approach

for identifying smart contract attacks automatically (cf. Section 5) . We present the implementation details in Appendix B.

a dataset of 63k transactions, demonstrates that the proposed
graph traversal takes an average of 108 ± 136ms per transaction.

• Our framework successfully detected a zero-day vulnerability
affecting Uniswap, which we disclosed responsibly. Additionally,
Clue identified 11 reentrancies that had been publicly reported
but were not part of our ground truth dataset. Our traversal-
based security analysis method achieves high true positive rates
of 100%, 75.41%, and 94.44% for reentrancy, faulty access control,
and price manipulation, respectively, while maintaining low false
positive rates of 0.87%, 5.57%, and 0.52% for these vulnerabilities.

2 BACKGROUND

2.1 Blockchain and Decentralized Finance

The advent of Bitcoin [20] marked the beginning of a new era of
decentralized databases known as blockchains. A blockchain is a
peer-to-peer (P2P) distributed database that consists of a series
of blocks, each containing a list of transactions. In a blockchain,
accounts are represented through unique addresses, and an address
can claim ownership of data attributed to it. Every transaction rep-
resents a change in the state of the blockchain, such as a transfer of
ownership or funds. The blockchain ensures that such ownership
transfers are timestamped and agreed upon among the participants.
In addition to simple transfers of funds from one address to another,
transactions can carry quasi-Turing-complete transition functions,
which are realized in the form of so-called smart contracts. Smart
contracts in essence are programs running on top of blockchains
and allow the implementation of various applications, including
financial products, i.e., Decentralized Finance (DeFi). These DeFi
applications enable a plethora of use cases, such as financial ex-
changes [13], lending [22], flash loans [23] and many more.

2.2 Ethereum Virtual Machine

Smart contracts are typically executed within a virtual machine
(VM) environment. One of the most popular VMs for this purpose is
the EVM, which we focus on within this work. EVM supports two
types of accounts: (i) the externally owned account (EOA), which
is controlled by a cryptographic private key and can be used to
initiate transactions, and (ii) the smart contract, which is bound to
immutable code and can be invoked by other accounts or contracts.

The code for an EVM contract is usually written in a high-level
programming language (e.g., solidity), and then compiled into EVM
bytecode. When users want to invoke the execution of a smart
contract, they can send a transaction from their EOA to the target
contract address, including any necessary parameters or data. An
invoked contract can also call other smart contracts within the
same transaction, enabling complex interactions between different
contracts. EVM utilizes three main components to execute a smart
contract: the stack, memory, and storage. The stack and memory
are volatile areas, which are reset with each contract invocation,
for storing and manipulating data, while the storage is persistent
across multiple executions.

While EVM was originally created for the Ethereum blockchain,
it has been adopted by a variety of blockchains beyond Ethereum,
including BNB Smart Chain and Avalanche. Throughout this work,
we focus on the context of Ethereum, but it is worth noting that
the contract execution representation EPG and dynamic analysis
framework Clue discussed in this work can also be applied to other
EVM-compatible blockchains.

2.3 Smart Contract Security

Smart contracts can have bugs and vulnerabilities, just like pro-
grams written for traditional systems. Both the academic and the
industry communities have therefore adopted tremendous efforts
at securing smart contracts. Most of the efforts to date have focused
on the smart contract layer, where manual and automated audits
aim to identify bugs before a smart contract’s deployment. Despite
these efforts, smart contract vulnerabilities have resulted in billions
of dollars in losses [33]. As we will explore in this work, detecting
and investigating vulnerabilities, forensic in general, is a tedious
manual effort that we aim to simplify.

3 SMART CONTRACT EXECUTION

REPRESENTATIONS

Code representation is a well-studied topic in program analysis lit-
erature [3]. Classic code representations, including abstract syntax
tree (AST) [1], control-flow graph (CFG) [2], and program depen-
dence graph (PDG) [9], are also applicable to smart contract analysis.
Despite their effectiveness in identifying particular contract vulner-
abilities [17, 24, 30], these static representations ignore the dynamic
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1 pragma solidity ^0.8.0;
2 contract Foo {
3 mapping (address => uint) public balances;
4 function withdraw (uint amt) public {
5 uint _balance = balances[msg.sender ];
6 if (_balance >= amt) {
7 msg.sender.call{value: amt}("");
8 balances[msg.sender] = _balance - amt;
9 } else {
10 revert("insufficient balance");
11 }
12 }
13 }
14 contract Bar {
15 function callWithdraw(address foo) public {
16 Foo(foo).withdraw (10 ether);
17 }
18 fallback () external payable {
19 if (address(this).balance < 99999 ether) {
20 callWithdraw(msg.sender);
21 }
22 }
23 }

Listing 1: Reentrancy vulnerability example. The contract

Foo contains a reentrancy vulnerability (line 7 and 8), which

an attacker can exploit with the contract Bar.

information exposed in the concrete contract executions, which
we aim to capture in this work. Specifically, in the following, we
illustrate (cf. Figure 2) how to represent smart contract executions
with the (i) call trace graph (CTG), (ii) dynamic control-flow graph
(DCFG), and (iii) dynamic dependence graph (DDG).

3.1 Running Example

As a running example, we consider a thoroughly studied contract
vulnerability, reentrancy, which results in the infamous DAO at-
tack [4, 6]. Listing 1 features two contracts, the vulnerable contract
Foo and the adversarial contract Bar. Foo allows users to keep
a balance of ETH at their address, and also allows withdrawing
the deposited ETH. The withdraw function, however, performs
the withdraw transaction prior to deducting the account balance
(line 7 and 8, Listing 1) — and is hence vulnerable to reentrancy.
Bar exploits the reentrancy through repeated, reentrant calls. An
adversary calls the callWithdraw function of Bar and Bar further
calls the withdraw function of Foo. In the withdraw function, when
Foo sends the specified amount of ETH to Bar (cf. line 7, Listing 1),
the fallback function of Bar is triggered. This fallback function
invocation allows repeated ETH withdrawals from Bar.

3.2 Call Trace Graph

In a transaction, multiple smart contracts can be invoked in a nested
and successive manner. We show in our reentrancy example that
the contract Foo and Bar invoke each other repeatedly. Such con-
tract invocations can be structured into a CTG (cf. Figure 2a). Given
a transaction, the CTG captures the sequence and hierarchy of
contract invocations. Ignoring the detailed executions within a con-
tract, every invocation in a CTG is abstracted into a quintuple: (i)
from address — caller; (ii) to address — callee; (iii) invocation op-
code — the triggering opcode (cf. Section 4.2.1); (iv) call value — the
amount of ETH transferred with the call; (v) call data — call parame-
ters. Call value, the amount of ETH transferred with a contract call,

differentiates the CTG apart from traditional software executions
and is key to the specificity of smart contract execution.

Owing to its simplicity, the concept of CTG is extensively em-
ployed in contract security analysis, particularly for manual attack
postmortem processes. Popular EVM transaction decoders, such
as ethtx.info, essentially display the CTG of a given transaction to
enhance interpretation.

3.3 Dynamic Control-Flow Graph

ACFG represents smart contract code as a graph, where each vertex
denotes a basic block. A basic block is a piece of contract code that
is executed sequentially without a jump. Basic blocks are connected
with directed edges, representing code jumps in the control flow.

A CFG is a static representation of contract code, but can also be
constructed dynamically while a contract executes, i.e., a so-called
DCFG. Figure 2b shows the DCFG of the Foo contract (cf. Listing 1)
during the reentrancy exploit. Contrary to the CFG, a DCFG focuses
on the dynamic execution information, hence ignoring the unvisited
basic blocks and jumps. For instance, the code at line 10, Listing 1
is not included in the DCFG (cf. Figure 2b).

3.4 Dynamic Dependence Graph

The PDG is another form of code representation outlining the
dependency relationship in a program. There are two main types of
dependencies, data dependency and control dependency [15]. In this
work, for data dependency, we refer to the data flow dependency.
An instruction 𝑋 has a flow dependency on an instruction 𝑌 , if
𝑌 defines a value used by 𝑋 . Note that data flow dependencies
are transitive, i.e., if 𝑌 is dependent on 𝑍 and 𝑋 is dependent on
𝑌 , then 𝑋 is dependent on 𝑍 . We do not consider the other types
of data dependencies, such as anti-dependencies [5] and def-order
dependencies [14], because they do not apply to contract executions.
For control dependency, informally, an instruction 𝑋 has a control
dependency on a branching instruction 𝑌 , if changing the branch
target for 𝑌 may cause 𝑋 not to be executed.

Similar to how a DCFG is constructed from concrete executions,
a PDG can also be built dynamically, which is referred to as a DDG.
We present the DDG of our reentrancy example in Figure 2c, where
𝐷 and 𝐶 denote data and control dependency, respectively.

3.5 Graphs on EVM Bytecode

The graphs in Figure 2 may appear trivial to generate by parsing
the transaction execution trace with the smart contract source code.
However, EVM only executes bytecode with no knowledge of the
high-level code. Furthermore, in practice, a contract is not always
open-source. For instance, a reentrancy attacker is unlikely to open-
source the exploit contract Bar. It is therefore reasonable to build
smart contract execution representations based on the bytecode
instead of any high-level language.

In this section, we present the reentrancy example (cf. Listing 1
and Figure 2) with solidity to ease understanding. We however
clarify that our contract execution representation EPG (cf. Section 4)
bases on the EVM bytecode and does not require access to the
contract source code. This results in discrepancies between the
graphs presented in Figure 2 and the actual graphs. For example,
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Bar.callWithdraw(foo)

Foo. withdraw(10 ether)

Adversarial EOA

Bar.fallback()

Foo. withdraw(10 ether)

10 ETH

10 ETH

(a) Call Trace Graph

Foo.withdraw(amount)

uint _balance = balances[msg.sender]

if (_balance >= amount)

true

msg.sender.call{value: amount}("");

(b) Dynamic Control Flow Graph

uint _balance = balances[msg.sender]

if (_balance >= amount)

balances[msg.sender] = _balance - amount

msg.sender.call{value: amount}("");

(c) Dynamic Dependence Graph

Figure 2: Contract execution representations for the reentrancy example in Listing 1. In Figure 2c, 𝐶 and 𝐷 indicate control and

data dependency respectively.

the nodes in DCFG and DDG should be bytecode basic blocks in
instead of solidity statements. We defer the details to Section 4.

4 EXECUTION PROPERTY GRAPH

In this section, we introduce the EPG as a means to represent and
formalize contract executions. The EPG is essentially a property
graph that combines the dynamic execution information on the
EVM bytecode level, supplied by three basic execution representa-
tions, namely CTG, DCFG, and DDG (cf. Section 3). We begin by
discussing the fundamentals of property graphs and subsequently
formalize the CTG, DCFG, and DDG using property graphs. Lastly,
we demonstrate the construction of the EPG by integrating these
three basic representations.

4.1 Property Graph

A property graph is a multi-relational graph, where vertices and
edges are attributed with a set of key-value pairs, known as prop-
erties [27]. Contrary to a single-relational graph, where edges are
homogeneous in meaning, edges in a property graph are labeled
and thus heterogeneous. Properties grant a graph the ability of rep-
resenting non-graphical data (e.g., different types of relationships
between entities in a social network graph). A property graph is
formally defined in Definition 4.1.

Definition 4.1 (Property Graph). A property graph is defined as
𝐺 = (𝑉 , 𝐸, 𝜆, 𝜇), where𝑉 is a set of vertices and 𝐸 ⊆ (𝑉 ×𝑉 ) is a set
of directed edges. 𝜆 : 𝐸 → Σ is an edge labeling function that labels
edges with symbols from the alphabet Σ, while 𝜇 : (𝑉 ∪𝐸) ×𝐾 → 𝑆

assigns key-value properties to vertices and edges, where 𝐾 is a set
of property keys and 𝑆 is a set of property values.

In this work, 𝐾𝑉 and 𝐾𝐸 denote the property key sets of vertices
and edges respectively, s.t. 𝐾 = 𝐾𝑉 ∪ 𝐾𝐸 . We use 𝑆k to denote the
set of property values associated with the property key k ∈ 𝐾 .

4.2 Formalizing Basic Representations

We proceed to formalize the three basic execution representations
with property graphs.

4.2.1 Formalizing Call Trace Graph. A CTG 𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇 , 𝜆𝑇 , 𝜇𝑇 )
represents the contract invocations within a transaction as dis-
cussed in Section 3.2). In a CTG, vertices𝑉𝑇 correspond to contracts,

addr : 0xab..cd addr : 0xba..ba

index : 0 
. . .

contract edge properties

addr : 0xf0..f0

CALL

addr : 0xba..baaddr : 0xf0..f0

index : 0 
. . .

addr : 0xba..ba

index : 0 
asset �ow : { 
    asset : ETH 
    from : 0xf0..f0 
    to : 0xba..ba 
    amount : 10e18 
} 

. . .

index : 0 
asset �ow : { 
    asset : ETH 
    from : 0xf0..f0 
    to : 0xba..ba 
    amount : 10e18 
} 

. . .

index : 0 
. . .

Figure 3: CTG of the reentrancy attack transaction (cf. Sec-

tion 3.1), where 0xab..cd is the adversarial EOA, 0xba..ba is

the adversarial contract Bar, and 0xf0..f0 is the vulnerable
contract Foo.

while edges 𝐸𝑇 represent contract invocations from a caller vertex
to a callee vertex (cf. Figure 3).

Vertex. Every contract vertex 𝑒𝑇 ∈ 𝐸𝑇 is assignedwith a property
addr (i.e., 𝐾𝑉

𝑇
= {addr}) and the associated property value is the

contract address.

Edge. The labeling function 𝜆𝑇 labels each CTG edge 𝑒𝑇 ∈ 𝐸𝑇 as
the opcode triggering this invocation. EVM provides four contract
call opcodes and two contract creation opcodes (cf. Equation 1).

Σ𝑇 = {CALL, DELEGATECALL, CALLCODE, STATICCALL,
CREATE, CREATE2, SELFDESTRUCT} (1)

Notable, we consider the opcode SELFDESTRUCT as a CTG edge.
SELFDESTRUCT destructs a smart contact and transfers the ETH
held by the destructed contract to a specified beneficiary account.
The process involves an asset transfer, which we intend to capture
in a CTG. A SELFDESTRUCT edge starts from the destructed contract
vertex and ends in the beneficiary account vertex.
𝜇𝑇 assigns five properties (cf. Equation 2) to 𝐸𝑇 as follows.

𝐾𝐸
𝑇 = {index, value, input, output, asset flow} (2)

A smart contract can initiate multiple contract calls within a
single transaction. index then indicates the invocation order from a
contract vertex. value is the amount of ETH carried in a contract
call. input and output are the input parameters and output results
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addr : 0xf0..f0
index : 0 
pc : 0

index : 15  
pc : 193

index : 16  
pc : 268

condition : false 
. . .

index : 17  
pc : 822

index : 33  
pc : 384

contract

properties

basic block

ENTRY JUMP JUMPI

Figure 4: Partial DCFG of the reentrancy attack transaction

(cf. Section 3.1). The JUMPI jump from the basic block at PC 193
to the basic block at PC 268 corresponds to the if conditional

statement at line 6, Listing 1.

of a contract invocation, respectively. asset flow specifies the asset
transfers following contract calls. There are generally two types of
assets in EVM: (i) the native cryptocurrency ETH, and (ii) assets
realized by smart contracts (e.g., fungible tokens). 𝜇𝑇 hence assigns
the asset flow property to 𝑒𝑇 ∈ 𝐸𝑇 in the following two scenarios.

(1) 𝑒𝑇 is associated with a transfer of ETH, i.e., 𝜆𝑇 (𝑒𝑇 ) ∈ {CALL,
CREATE, CREATE2, SELFDESTRUCT} ∧ 𝜇𝑇 (𝑒𝑇 , value) > 0.

(2) 𝑒𝑇 involves transfers of contract-realized assets. Themethod-
ology for identifying these transfers is presented in Appen-
dix B.4.

The property value of asset flow includes the transferred asset, from,
to address, and the transfer amount.

4.2.2 Formalizing Dynamic Control-Flow Graph. The DCFG aims
to capture the control flow within a specific contract execution.
When a transaction involves the invocations of multiple contracts
(or repeated invocations of a single contract), a DCFG is constructed
for each contract execution. It is important to note that, due to the
dynamic nature of DCFGs, executing the same contract multiple
times may result in different DCFGs. For ease of understanding, the
DCFG example in Figure 2b employs solidity statements. However,
in EVM bytecode, there is no notion of statements; instead, the
control flow of a contract is enabled by jumps between basic blocks
of bytecode. Therefore, the DCFG considered in this work consists
of basic block vertices, each representing a list of sequentially exe-
cuted opcodes. To simplify the integration of CTG and DCFG when
constructing the EPG (details are outlined in Section 4.3), we design
the DCFG to start from a contract vertex, representing the contract
under execution (cf. Figure 4).

Formally, a DCFG can be defined as 𝐺𝐶 = (𝑉𝑇 ∪𝑉𝐶 , 𝐸𝐶 , 𝜆𝐶 , 𝜇𝐶 ),
where 𝑉𝑇 and 𝑉𝐶 represent the contract and basic block vertices
respectively. Edges 𝐸𝐶 indicate code jumps between basic blocks.

Vertex. Each basic block vertex 𝑣𝐶 ∈ 𝑉𝐶 represents a basic block
of EVM bytecode. The property key set for 𝑉𝐶 is 𝐾𝐸

𝐶
= {index, pc},

where the property pc is the entry program counter of the basic
block (i.e., the location of the first opcode in the basic block). Be-
cause a basic block may be executed multiple times within a single
contract execution, pc alone is not sufficient to uniquely identify
one execution of a basic block. To address this, we introduce the
index property, an incremental counter that is incremented each
time a basic block is visited.

index : 0 
identi�er : { 
    addr :  0xf0..f0 
    slot : 0xc5..93 
} 
value : 10e18

index : 1 
identi�er : { 
    addr : 0xf0..f0  
    slot : 0xc5..93 
} 
value : 0

addr : 0xf0..f0
index : 0 
pc : 0

index : 15  
pc : 193

index : 16  
pc : 268

index : 17  
pc : 822

contract

basic block

ENTRY JUMP

JUMPI

storage

index : 33  
pc : 384

CONTROL TRANSITION WRITE

Figure 5: Partial DDG of the reentrancy attack transaction

(cf. Section 3.1). The basic block at PC 384 corresponds

to the assignment statement at line 8, Listing 1, where

balances[msg.sender] is updated.

Edge. An edge 𝑒𝐶 ∈ 𝐸𝐶 in a DCFG represents a code jump
between basic blocks. EVM supports two opcodes for code jumps:
JUMP (unconditional jump) and JUMPI (conditional jump). A special
type of edge, labeled as ENTRY, connects the starting contract vertex
𝑣𝑇 to a basic block vertex 𝑣𝐶 (s.t., 𝜇𝐶 (𝑣𝐶 , pc) = 0 ∧ 𝜇𝐶 (𝑣𝐶 , index) =
0), indicating the entry of contract execution. In summary, a DCFG
can contain three types of edges as outlined in Equation 3.

Σ𝐶 = {ENTRY, JUMP, JUMPI} (3)

Every JUMPI edge is assigned with a property condition by 𝜇𝐶 (i.e.,
𝐾𝐸
𝐶

= {condition}). The condition property indicates the concrete
evaluated jump condition value.

4.2.3 Formalizing Dynamic Dependence Graph. To capture the de-
pendencies in smart contracts, in the DDG, we consider how various
data sources impact contract executions. For example, we intend to
capture how the value change of a storage variable impacts a con-
ditional jump (i.e., the JUMPI condition) in the contract execution.
There are in general two types of data sources.
writable data source The value of a writable data source can
change while a contract executes. For example, a storage variable
can be written in a contract call. This variable can further impact
the subsequent contract executions. Notable, we consider the ETH
balance of every account as such a special writable data source,
because, similar to a storage variable, the ETH balance of an account
can be changed along with contract calls. For these writable data
sources, we keep a record of the full change history in the DDG.
contextual data source Contextual data sources are read-only,
such as call data and block number.

The DDG is built upon the DCFG. Formally, a DDG 𝐺𝐷 =

(𝑉𝑇 ∪ 𝑉𝐶 ∪ 𝑉𝐷 , 𝐸𝐷 , 𝜆𝐷 , 𝜇𝐷 ) contains contract vertices 𝑉𝑇 , basic
block vertices 𝑉𝐶 , and data source vertices 𝑉𝐷 , while edges 𝐸𝐷 rep-
resent the data and control dependencies. Data sources like storage
are persistent across contract invocations. Therefore, two DDGs
may share the same data source vertices.

Vertex. For a writable data source, because we keep a record of
its change history, there may exist multiple vertices. A data source
vertex has three properties, i.e., 𝐾𝑉

𝐷
= {index, identifier, value}. The

identifier property uniquely identifies the data source. For example,
the contract address and slot hash uniquely identify a storage source.
The index property serves as history version number, which is
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addr : 0xf0..f0 addr : 0xba..ba addr : 0xf0..f0

asset �ow : ... 
. . .

addr : 0xba..ba

index : 16  
pc : 268

index : 16  
pc : 268

index : 15  
pc : 193

index : 15  
pc : 193

index : 0 
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    addr :  0xf0..f0 
    slot : 0xc5..93 
} 
value : 10e18
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Figure 6: Partial EPG of the reentrancy attack transaction (cf.

Section 3.1).

incremented every time the data source changes, while the value
property stores the concrete value of a data source. In the case of
a read-only data source, there is only one vertex, and the index
property is ignored.

Edge. There are four types of DDG edges (cf. Equation 4). When
a writable data source changes, a new data source vertex 𝑣𝐷 is
created. A WRITE edge then connects the basic block vertex 𝑣𝑇 ,
which contains the opcode performing the data writing operation
(e.g., SSTORE), to the newly created vertex 𝑣𝐷 . A control dependency
edge, labeled as CONTROL, connects the data source vertex of a
JUMPI condition to the target basic block vertex. TRANSITION edges
connect the writable data source vertices following an ascending
index order. If the written content of a data source depends on
another data source, they are connected with a DEPENDENCY edge.

Σ𝑃 = {WRITE, TRANSITION, CONTROL, DEPENDENCY} (4)

4.3 Constructing the Execution Property Graph

Lastly, the EPG is constructed by merging the three basic property
graphs. Because every DCFG originates from a contract vertex and
the DDG is built upon the DCFG, the graph merging process is
straightforward. The formal definition is provided in Definition 4.2.

Definition 4.2 (Execution Property Graph). AnEPG𝐺 = (𝑉 , 𝐸, 𝜆, 𝜇)
is constructed by merging CTG, DCFG, and DDG, s.t.,

𝑉 = 𝑉𝑇 ∪𝑉𝐶 ∪𝑉𝐷
𝐸 = 𝐸𝑇 ∪ 𝐸𝐶 ∪ 𝐸𝐷 ∪ T(𝐸𝑇 )
𝜆 = 𝜆𝑇 /𝐶/𝐷
𝜇 = 𝜇𝑇 /𝐶/𝐷

(5)

where 𝜆𝑇 /𝐶/𝐷 and 𝜇𝑇 /𝐶/𝐷 denote selecting the appropriate labeling
and property function accordingly. T : 𝑉𝑇 × 𝑉𝑇 → 𝑉𝐶 × 𝑉𝑇 is a
transformation function, elaborated further in the following.

To incorporate more execution details into the EPG, we apply the
transformation function T to the CTG edges 𝐸𝑇 . For every 𝑒𝑇 ∈ 𝐸𝑇 ,
T generates a new edge 𝑒′

𝑇
and inserts into the EPG. The label and

properties of 𝑒′
𝑇
are inherited from 𝑒𝑇 , while the tail vertex of 𝑒′𝑇 is

changed from the caller contract vertex to the basic block vertex
initiating the contract invocation. The generated edges enable the
EPG to capture contract invocations in a more granular manner.

As an illustration, Figure 6 presents the EPG of the reentrancy
attack transaction (cf. Section 3.1), with unnecessary details omitted.
From the diagram, it is evident that the balance update (i.e., the
storage write) occurs after the ETH transfer, which constitutes the
root cause of this reentrancy vulnerability.

5 TRAVERSALS BASED SECURITY ANALYSIS

The EPG provides extensive information about the contract exe-
cutions involved in a transaction. In this section, we explore how
graph traversals, a prevalent method for mining information in
property graphs, automates the identification of contract attacks.
We start with discussing the high-level rationale for security analy-
sis based on EPG traversals. Subsequently, the basics of property
graph traversals are outlined. Lastly, we delve into three types of
real-world vulnerabilities, reentrancy, faulty access control, and
price manipulation.

5.1 Rationale

The literature suggests that the primary objective of an individual
executing a smart contract attack is typically to obtain financial
gain [33]. By exploiting vulnerabilities, an attacker may illicitly
acquire financial assets in a way that deviates from the intended
design of the compromised contract. As a result, an attack trans-
action often entails the transfer of assets from the victim to the
attacker. To perform a comprehensive security analysis, it is crucial
to identify suspicious asset transfers within a transaction. More
specifically, a profound understanding of the root cause of a con-
tract attack necessitates an in-depth examination of the underlying
mechanisms by which the attacker procures assets from the victim.

For example, in the context of a reentrancy attack (cf. Section 3.1),
the attacker can repeatedly invoke a vulnerable contract in a reen-
trant fashion. To detect such an attack, it is vital to pinpoint the
specific asset transfers associated with the reentrant contract calls.
Moreover, a reentrancy attack exploits the inconsistent contract
state, which is modified subsequent to the malicious asset transfer.
The extensive runtime information contained in the EPG enables
the detection of suspicious execution patterns, such as reentrant
contract invocations and inconsistent contract states. This identifi-
cation can be achieved by traversing the graph and conducting an
appropriate search, as further elaborated in Section 5.3.

We therefore propose a method based on EPG traversals to en-
able automated transaction security analysis. The goal of traversing
the EPG is to infer high-level semantic information from low-level
graphic representations and subsequently identify malicious logic
patterns. This inference process does not necessitate the knowl-
edge of the application-level logic, rendering the identification
methodology more generic and extensible. Nonetheless, for specific
vulnerabilities, such as price manipulation, relying solely on graph
traversal may result in high false positive rate (FPR) and false nega-
tive rate (FNR). To address these vulnerabilities, our methodology
also supports integrating corresponding domain knowledge (e.g.,
estimating price change to detect price manipulation attack) into
the traversal process, which can substantially decrease the FPR and
FNR. We present the details in Section 6.
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5.2 Graph Traversal Basics

A traversal refers to the process of visiting vertices of a graph in
a specific manner. This process can involve simply visiting every
vertex in a predetermined order, or using more sophisticated rules
to navigate through the graph. Our formal definition of graph
traversal, provided in Definition 5.1, is based on the definition
given in [31].

Definition 5.1 (Traversal). A traversal of a graph 𝐺 is a function
T : P(𝑉 ) → P(𝑉 ) that maps a set of vertices to another set
vertices, where 𝑉 is the vertex set of𝐺 and P(𝑉 ) is power set of𝑉 .

Traversals can be furthered chained together, denoted by T1 ◦ T2.
We define the elementary traversals as follows.

The filter traversal (cf. Equation 6) returns the nodes in 𝑋 that
satisfy the predict 𝑝 (𝑣).

Filter𝑝 (𝑋 ) = {𝑣 ∈ 𝑋 : 𝑝 (𝑣)} (6)
We also define the following forward and backward traversals.

The “out” traversals (cf. Equation 7) return nodes reachable from the
set of nodes 𝑉 under specific conditions, while the “in” traversals
(cf. Equation 8) return nodes that can reach the set of nodes𝑉 under
specific conditions.

Out𝑙 (𝑉 ) =
⋃
𝑣∈𝑉

{𝑢 : (𝑣,𝑢) ∈ 𝐸 ∧ 𝜆((𝑣,𝑢)) = 𝑙} (7)

In𝑙 (𝑉 ) =
⋃
𝑣∈𝑉

{𝑢 : (𝑢, 𝑣) ∈ 𝐸 ∧ 𝜆((𝑢, 𝑣)) = 𝑙} (8)

We further define a special traversal RT (𝑉 ) as follows:

RT (𝑉 ) =
⋃
𝑣∈𝑉

©­«{𝑣} ∪ ©­«
⋃

𝑣′∈T ({𝑣})
RT ({𝑣 ′})

ª®¬ª®¬ (9)

RT (𝑉 ) recursively applies a traversal T on a vertex set 𝑉 until
the result of traversal T returns an empty set.

For example, we can use ROut𝑇 (𝑉 ) to visit all contract vertices
from a contract vertex set𝑋 . When𝑉 is a single vertex set 𝑣𝑇 where
𝑣𝑇 ∈ 𝑉𝑇 , ROut𝑇 (𝑉 ) traverses all descendant calls of 𝑣𝑇 in CTG. We
let TCon be the alias of ROut𝑇 (cf. Equation 10).

TCon = ROut𝑇 (10)
We define R−T , a useful variant of RT which excludes the initial

vertex set 𝑉 :

R−T (𝑉 ) = RT (𝑉 ) −𝑉 (11)

5.3 Reentrancy

The concept of reentrancy vulnerability has been well explored in
prior research. Specifically, the reentrancy vulnerability is defined
by three key characteristics: (i) the presence of reentrant contract
calls, (ii) the control of asset transfers relying on outdated storage
values, and (iii) storage updates subsequent to asset transfers [25].
In the following, we introduce a method for identifying reentrancy
vulnerabilities with EPG traversals.

We provide an overview of the traversals depicted in Figure 7.
The traversals initially identify the occurrence of a reentrant in-
vocation, subsequently collect all basic blocks that write to the

control data source of the child invocation, and ultimately ascer-
tain whether these basic blocks are executed following the child
invocation.

To identify reentrant contract invocations, we define the traver-
sal Reentrant

Reentrant({𝑣𝑇 }) = Filter𝑝 ◦ TCon({𝑣𝑇 }) (12)

where 𝑝 is a predicate returning true if 𝜇 (𝑣, 𝑎𝑑𝑑𝑟 ) = 𝜇 (𝑣𝑇 , 𝑎𝑑𝑑𝑟 ).
Given a specific reentrant pair (𝑣0, 𝑣)where 𝑣 ∈ Reentrant({𝑣0}),

we can determine if it is a reentrancy attack by examining all stor-
age control in 𝑣 . Given a specific storage control in 𝑣 , we need to
find the set of basic blocks 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 that write to the same storage
slot. If there exists a basic block 𝑏 ∈ 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 which (i) belongs to a
descendant call of 𝑣0 or 𝑣0 itself; (ii) does not belong to a descendant
call of 𝑣 or 𝑣 itself; (iii) is executed after 𝑣 , then we can know that a
reentrancy attack happens.

Let 𝐶𝑇 be the label of edges transformed by T (cf. Equation 5).
We define a traversal ControlBlock (cf. Equation 13) which find
𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , i.e. 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = ControlBlock({𝑣}).

ControlBlock = InWRITE ◦ OutTRANSITION
◦ InCONTROL ◦ ROut𝐶,𝐶𝑇

(13)

The ControlBlock traversal first starts with ROut𝐶,𝐶𝑇
, which

finds all descendant calls of 𝑣 along with their basic blocks in DCFG.
Then, InCONTROL gives all the data sources that can control these
basic blocks and InWRITE ◦OutTRANSITION finds all basic blocks that
write to these data sources.

Given a call 𝑣 ′ ∈ Out𝑇 ({𝑣}), i.e. a direct child call of 𝑣0, we
define a traversal SuccBlock1 ({𝑣 ′}) that finds all basic blocks of
descendant calls of 𝑣0 which are executed after 𝑣 ′’s completion:

SuccBlock1 = Filter𝑝𝐶 ◦ R−Out𝐶,𝐶𝑇
◦ In𝐶𝑇 (14)

First, In𝐶𝑇 finds the basic block in 𝑣0 where 𝑣 ′ is called, then
Filter𝑝𝐶 ◦ R−Out𝐶,𝐶𝑇

outputs all descendant calls after that basic
block, where predicate 𝑝𝐶 holds iff 𝜆(𝑣) ∈ 𝜆𝐶 . Notice we use
R−Out𝐶,𝐶𝑇

to exclude the basic block where 𝑣 ′ is called.
However, if 𝑣 ′ is not a direct child call of 𝑣0, SuccBlock1 cannot

find basic blocks in 𝑣0 after 𝑣 ′’s completion. We relax this constraint
in SuccBlock→𝑣0 ({𝑣 ′}):

SuccBlock→𝑣0 ({𝑣 ′}) = SuccBlock1
(
RIn𝑇 ({𝑣 ′}) − RIn𝑇 ({𝑣0})

)
(15)

Here RIn𝑇 ({𝑣 ′}) − RIn𝑇 ({𝑣0}) outputs all the calls between 𝑣 ′
and 𝑣0, including 𝑣 ′ but excluding 𝑣0. Note that if 𝑏 is belongs to
SuccBlock→𝑣0 ({𝑣 ′}), it must also be the basic block inside call 𝑣0
or its descendant, i.e.:

𝑏 ∈ SuccBlock→𝑣0 ({𝑣 ′}) =⇒ 𝑏 ∈ R−Out𝐶 ◦ TCon({𝑣0})

Given these traversals, we can formally define the condition of
reentrnacy attacks:

∃𝑣0, 𝑣 ∈ 𝑉𝑇 , 𝑏 ∈ 𝑉𝐶 : 𝑣 ∈ Reentrant({𝑣0})
∧ 𝑏 ∈ ControllBlock({𝑣})
∧ 𝑏 ∈ SuccBlock→𝑣0 ({𝑣})

(16)
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Figure 7: Three traversal components of the reentrancy attack detection. CALL* represents all edge labels of 𝐸𝑇 and 𝐸𝐶𝑇 , JUMP*
represents all edges of 𝐸𝐶 . Except TRAVERSAL, dotted edges represent one or more edges with internal vertices omitted. TRAVERSAL
edges represent the result of traversal execution.

It is important to note that our traversal approach covers all three
types of reentrancy vulnerabilities (i.e., cross-contract, delegated,
create-based reentrancy) discussed in [25], as EPG uses a unified
model to capture all types of contract calling.

5.4 Faulty Access Control

Access control in smart contracts often involves the verification of
the contract caller. As a result, it is feasible to identify the absence of
access control by examining the presence of control flow involving
the caller. With the CONTROL edges in the EPG, checking the control
data sources allows inspecting whether a control flow includes the
caller verification. Note that we exclude the control flows unrelated
to asset transfers.

We define ControlSource (cf. Equation 17) which returns all
the relevant control data sources of a specific basic block.

ControlSource = RInDEPENDENCY ◦ InCONTROL ◦ RIn𝐶,𝐶𝑇
(17)

Given a basic block, RIn𝐶,𝐶𝑇
finds all basic block executed be-

fore it, and RInDEPENDENCY ◦ InCONTROL outputs all relevant control data
sources of these blocks.

Let 𝑉𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 be the set of basic blocks that have asset transfers.
We can obtain 𝑉𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 by the following traversal:

𝑉𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 = Filter𝐻𝑎𝑠𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 ◦ In𝐶𝑇 (𝑉𝑇 ) (18)

where the predicate 𝐻𝑎𝑠𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 is defined as follows:

𝐻𝑎𝑠𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (𝑏) =

𝑏 ∈ 𝑉𝐶 ∧
⋃

𝑣𝑇 ∈Out𝐶𝑇 ({𝑏})
𝜇 ((𝑏, 𝑣𝑇 ), 𝑎𝑠𝑠𝑒𝑡 𝑓 𝑙𝑜𝑤) ≠ ∅ (19)

Given 𝑉𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 and ControlSource, we can formally define
the condition of faulty access control:

∃𝑏 ∈ 𝑉𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 : 𝑣ORIGIN ∉ ControlSource({𝑏}) (20)

5.5 Price Manipulation

A price manipulation attack refers to the malicious exploitation of
vulnerabilities in smart contracts for the purpose of manipulating
asset prices, generally achieved by tampering with price oracles.
In cases where a price manipulation attack occurs within a sin-
gle transaction, the attacker can alter the price, typically stored
in the contract storage, and subsequently profit by, for instance,
exchanging assets at the manipulated price. This type of attack
transaction entails an asset transfer, the amount of which relies on
the manipulated storage.

Our price manipulation traversal then attempts to search such
asset transfers that are “influenced” by previous storage changes.
It first identifies all possible control data sources of asset flows
using ControlSource, and then finds all basic blocks that write to
the aforementioned data sources (InWRITE) and their related control
data sources. The traversal is defined in Equation 21.

WriteControl = ControlSource ◦ InWRITE ◦ ControlSource
(21)

The price manipulation attack condition is shown in Equation 22.

∃𝑏 ∈ 𝑉𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 : 𝑣ORIGIN ∉ WriteControl({𝑏}) (22)

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of EPG traversals in
identifying smart contract attacks.

6.1 Evaluation Design

6.1.1 Implementation. We implement a prototype of the Clue
framework (cf. Figure 1), including the transaction trace simula-
tor, EPG construction, and graph traversal, totaling 6,077 lines of
code (LoC) in Golang. Specifically, the transaction trace simula-
tor is implemented using 661(11.7%) LoC. The three flow tracking
modules of Clue are implemented with 3,019(53.3%) LoC, while
the graph construction module is implemented with 1,984(35.0%)
LoC. We utilize Apache TinkerGraph as our graph backend,which
is connected to Clue through the WebSocket protocol within a
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local network. The graph traversal employs the Golang binding of
the Gremlin [26] language with a total of 413 LoC.

6.1.2 Setup. The evaluation is conducted on an Ubuntu v22.04
machine, equipped with 24 CPU cores and 128 GB of RAM.

6.1.3 Augmented Dataset. For the evaluation, we construct three
separate datasets: (i) an attack, (ii) a high-gas and (iii) a regular
transaction dataset. The datasets are based on an augmented refer-
ence dataset, which originates from the work of Zhou et al. [33],
containing 2,452 DeFi attack transactions on Ethereum. We focus
on the three most common types of smart contract attacks: (i)
reentrancy, (ii) faulty access control, and (iii) price manipulation,
with 87, 61, and 54 attack transactions, respectively.

To enhance the dataset, we collect all transactions that have
interacted with the related victim contracts between block 9193268
(1st of January, 2020) and 14688629 (30th of April, 2022), result-
ing in 4,786,542 transactions that are not classified as attacks for
comparative analysis. For each vulnerability type, we create the
following three subsets of transactions:

Attack dataset The Attack dataset comprises all attack transac-
tions that were reported in [33] and correspond to the evaluated
vulnerability type. Its main objective is to assess the true positive
rate and FNR, as well as to gain an understanding of the reasons
behind misclassification.
Non-attack datasets The non-attack datasets aim to evaluate
Clue’s performance on benign transactions. To this end, all at-
tack transactions are manually removed from the following two
datasets when sampling transactions. The primary objective is to
assess the true negative rate and FPR.
• High-Gas: As attack transactions often consume more gas due

to complex actions, the High-Gas dataset initially comprises
the top 1,100 transactions with the highest gas consumption.
After removing the attacks, this dataset represents complex ex-
ecution logic, evaluating performance on benign transactions
that could be misclassified as attacks.

• Regular : The Regular dataset initially contains 20,000 randomly
selected transactions. After removing true positives, it reflects
typical non-attack transactions.

6.1.4 Limitations. The evaluation design presents certain limita-
tions regarding the scope of vulnerabilities, dataset dependency,
and time performance estimation. First, our evaluation focus on
the three most common vulnerability types. We, however, remark
that the Clue framework remains generic. Second, the dependency
on Zhou et al.’s dataset [33] as ground truth could introduce biases,
as it may contain errors and cannot capture all real-world attack
scenarios. To mitigate these biases, we employ manual inspections
in our evaluation.

6.2 Reentrancy

Table 1 presents the evaluation results of the reentrancy attack iden-
tification using the Attack, High-Gas, and Regular datasets. Clue
effectively detects reentrancy attacks with a low FNR of 8.05% in
the Attack dataset and a low false-positive rate of 0.19% and 0.005%
in the High-Gas and Regular datasets, respectively.

Table 1: Reentrancy evaluation. The Attack dataset show-

cases a high true positive rate (91.95%) and a relatively low

false negative rate (8.05%) with all false negatives resulting

from "No Asset Flow" cases. In non-attack datasets, the true

negative rates are remarkably high (99.81%) for High-Gas and
(99.99%) for Regular. The few false positives are caused by

Flash Loan and Rebase Token cases.

Non-attack
Dataset Attack High-Gas Regular

Size 87 1.077 19.985
Gas Cost 3.33 ± 3.41M 2.13 ± 1.38M 0.24 ± 0.29M

Generic Rule (cf. Section 5.3)

Traversal Time 108 ± 136ms 20 ± 21ms 7 ± 3ms
TP (%) 80 (91.95%) - -
FN (%) 7 (8.05%) - -
No Asset Flow 7 / 7 - -

TN (%) - 1,075 (99.81%) 19,984 (99.99%)
FP (%) - 2 (0.19%) 1 (0.01%)
Flash Loan - 2 / 2 0 / 1
Rebase Token - 0 / 2 1 / 1

Refined Rule (Generic Rule + Refinement R1)

Traversal Time 0.32 ± 0.93s 52 ± 109ms 16 ± 347ms
TP (%) 87 (100%) - -
FN (%) 0 (0%) - -
TN (%) - 1,069 (99.26%) 19,812 (99.13%)
FP (%) - 8 (0.74%) 173 (0.87%)

Notably, Clue successfully discovers 11 new reentrancy trans-
actions within the Regular dataset. These transactions are con-
firmed as true positives that had been missed in the Attack dataset
from [33]. We have reported these missed true positives to the au-
thors, who have acknowledged the findings and confirmed their
intent to address them in the next revision of their work.

6.2.1 Zero-day Vulnerability Discovery - imBTC Reentrancy. Af-
ter further investigation of these 11 newly discovered reentrancy
transactions, we discover a potential vulnerability in token imBTC.1
The attacks under investigation commence with the utilization of
imBTC to exchange for ETH within the Uniswap V1 pool. Sub-
sequently, the attacker exploits the callback function during the
transfer of imBTC as an ERC777 token, initiating a reentrancy at-
tack. This enables the attacker to execute another exchange with
inaccurate pricing prior to the liquidity pool update, ultimately
yielding a profit. The fundamental cause of these attacks can be
ascribed to the discrepancy between the Uniswap V1 standard and
the ERC777 standard. Through further analysis of imBTC, our re-
search uncovers potential attack vectors within Uniswap V2 as
well. In accordance with responsible disclosure practices, we have
reported these findings to the developers and have received prompt
and constructive responses.2

1imBTC token address: 0x3212b29E33587A00FB1C83346f5dBFA69A458923
2As the vulnerability has not yet been addressed, we are unable to provide further
details in this submission.
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6.2.2 False Negative Analysis for Attack Dataset. In assessing the
Attack dataset, the false negatives can be attributed to the FeiProto-
col incident. Upon manual examination, all false negative instances
can be classified as a single type – no asset flow reentrancy, which is
an atypical reentrancy pattern and hence beyond the scope of the
traversal rule outlined in Section 5.3. We further extend the Clue
framework below by adding refinement rules to address this issue.

6.2.3 Refinement R1 - Status Change based Reentrancy Detection.
The traversal rule defined in Section 5.3 fails to identify this attack
due to the lack of asset flow in the reentrant call. To better capture
such attacks, we propose a new refinement rule for reentrancy
attack detection. The new refinement R1 takes into account the
unexpected status changes in a reentrant call, expanding the detec-
tion capabilities of the original traversal rule. While R1 successfully
identifies all the transactions in the Attack dataset, it introduces a
significant time overhead, which is about 2.9× on average compared
to the time required by the original rule.

6.2.4 False Positive Analysis for Non-Attack Dataset. In analyzing
the High Gas and Regular datasets, Clue identifies 2 out of 1.077
and 1 out of 19.985 benign transactions as reentrancy attacks, re-
spectively (i.e., false positives). Consequently, the FPR amounts
to 0.19% and 0.01% in the High-Gas and Regular datasets, respec-
tively. Both false-positive cases from the High-Gas dataset are as-
sociated with the flash loan process in Euler Finance. The callback
function tied to the flash loan creates a reentrant call pattern. Fur-
thermore, there are some special variables related to the state of
borrowing and repayment. They are changed both when borrowing
and repayment, and affect the control flow and the asset flow. This
issue can be resolved by verifying the from and to addresses of
the suspicious asset flow. The single false-positive case from the
Regular dataset also interacts with another rebase token similar to
imBTC as we described in section 6.2.1. It triggered a reentrant call
from Uniswap V2 router when performing a transfer to swap and
add liquidity. However, there is no potential vulnerability in this
situation as the caller is limited to Uniswap V2 router.

6.2.5 Summary. Clue demonstrates a high level of effectiveness
in detecting reentrancy attacks, including previously undiscovered
attack instances. As for false negatives, the extensibility of EPG
facilitates the development of new rules to accurately recognize
emerging attack patterns. In the case of false positives, they can
either be rapidly filtered out or utilized as indicators of potentially
risky behavior that merits further scrutiny.

6.3 Faulty Access Control

Table 2 presents the evaluation results of faulty access control attack
identification using the Attack, High-Gas, and Regular datasets. In
summary, Clue identifies 46 out of 61 transactions as faulty access
control attacks in the Attack dataset, resulting in a FNR of 24.59%.

6.3.1 False Negative Analysis for Attack Dataset. Our experiment
yields 23 FNs for faulty access control attack detection. Upon further
inspection, we categorize the FNs into two types:

6.3.2 Refinement A1 - FN Caused by Access Control within the
Attack Contract. 8 of the false negatives result from the attacker’s
access control within the attack contract, which seemingly covers

Table 2: Faulty access control evaluation. The Attack dataset

demonstrates a high true positive rate (75.41%) and a low false

negative rate (24.59%), with all false negatives being multi-

transaction cases. In non-attack datasets, the true negative

rates are remarkably high (98.44%) for High-Gas and (94.43%)
for Regular. The few false positives stem from complex DeFi

transactions and insufficient authorization checks.

Non-attack
Dataset Attack High-Gas Regular

Size 61 1,091 19,992
Gas 0.22 ± 0.65M 2.21 ± 1.53M 0.24 ± 0.28M

Generic Rule (cf. Section 5.4)

Traversal Time 9 ± 18ms 0.7 ± 8.6s 13 ± 244ms
TP (%) 38 (62.30%) - -
FN (%) 23 (37.70%) - -
Multi-tx 15/23 - -
Attacker contract 8/23 - -

TN (%) - 942 (86.34%) 14,850 (74.28%)
FP (%) - 149 (13.66%) 5,142 (25.72%)

Refined Rule (Generic Rule + Refinement A1, A2, A3)

Traversal Time 48 ± 121ms 8 ± 47s 0.08 ± 3.07s
TP (%) 46 (75.41%) - -
FN (%) 15 (24.59%) - -
Multi-tx 15/15 - -

TN (%) - 1,074 (98.44%) 18,879 (94.43%)
FP (%) - 17 (1.56%) 1,113 (5.57%)

the asset flow in the victim contract, leading to false negatives.
This is because the attacker’s access control in the outer layer
of the attack contract implies that only the attacker can execute
the attack, making it appear as if the victim contract’s asset flow
is protected by access control as well. To address this issue, we
introduce refinement A1, which refines our traversal rule based on
this observation and successfully eliminates these 8 false negatives.
In refinement A1, we explicitly exclude control data sources inside
attacker contracts.

6.3.3 FN Caused by Multi-Transaction Attacks. The remaining 15
false negatives are associated with the DaoMaker attack[28], in
which the attacker executes the attack across multiple transactions.
As a concrete example, in the first transaction, the attacker gains
control of the contract through a function with faulty access control,
and in the second transaction, transfers all the contract’s assets.
We contend that this type of attack is beyond the scope of Clue, as
Clue is currently designed for single transaction analysis.

6.3.4 False Positive Analysis for Non-Attack Dataset. In the High-
Gas and Regular datasets, false positives are primarily attributed
to the complex and diverse access control mechanisms employed
in DeFi applications. The initial experiment yields a false positive
rate (FPR) exceeding 25%. To mitigate the FPR, we introduce two
targeted refinements. The combination of these two refinements
allows us to reduce the false positive rate to approximately 5%.
While we believe that additional refinements could further decrease
the FPR, the inherent complexity and variety of access control
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mechanisms in DeFi applications make it difficult to develop a
universally applicable rule for all forms of faulty access control.

6.3.5 Refinement A2 - Addressing False Positives Stemming from
Fixed Recipients. Refinement A2 focuses on false positives aris-
ing due to fixed recipients in contract transactions. A number of
contracts enable permissionless transfers to predetermined destina-
tions. For example, a widely-used function called harvest 3 allows
any user to collect compound interest to a designated contract. To
tackle this issue, we implement a rule in the traversal process to
examine all data sources associated with the asset flow destination,
confirming whether they can be controlled by transaction call data.

6.3.6 Refinement A3 - Eliminating False Positives Linked to Asset
Swaps. Refinement A3 is designed to eliminate false positives that
occur in asset swap transactions. In a token swap scenario, the
returning asset flowmight seemingly lack access control. To address
this, we attempt to group asset flows based on their associated data
sources related to the transfer amount, ensuring a minimum of one
controlled flow in each group.

6.3.7 Challenges. Some applications leverage signature validation
as the access control method, in which users can prove to the
contract that they have access to the vault by providing signatures
from the owner. Such implicit access control is hard to capture in the
traversal. Furthermore, while profiting is almost always the ultimate
goal of a DeFi attack, as demonstrated by the DaoMaker attack,
faulty access control can also occur on functions without asset
flows, making it even more challenging to design a general rule for
detection. These challenges and insights highlight the complexity
of DeFi applications and the need for developing more sophisticated
techniques in future works to better identify and mitigate the risks
associated with faulty access control.

6.4 Price Manipulation

Table 3 presents the evaluation results of price manipulation attacks.
In the assessment of theAttack dataset,Clue identified 53malicious
transactions in total, with 1 attack transaction undetected, resulting
in a FNR of 1.85%. The undetected transaction is part of a multi-
transaction attack event, which is out of the scope of this study.
In the High-Gas dataset, the generic tranversal rule flagged 753
transactions, yielding a high false positive rate of 70.05%. In the
Regular dataset, it flagged 1,579 transactions, resulting in a false
positive rate of 7.90%.

Upon examination of these false positives, we discover that the
generic rule does not perform well in (i) transactions that consume
significant amounts of gas, particularly those involving flash swap
actions between multiple swap pools; and (ii) specific DeFi actions,
such as claiming and compounding rewards. To mitigate this issue,
we introduce the following heursitics.

6.4.1 Refinement P1 - Detecting Irregular Price Fluctuation. We flag
swap pool contracts within the transaction call traces and analyze
the relative price fluctuations of these pools to detect any irregular
price shifts. We accomplish this by determining the proportion of
the alteration in the token balance within the swap pool relative
to the aggregate token balance. It is crucial to note that most price

3https://docs.beefy.finance/developer-documentation/strategy-contract#harvest

Table 3: Price manipulation evaluation. The refined rule

yields a high true positive rate (94.44%) and a relatively

low false negative rate (5.56%) in the Attack dataset, with

false negatives resulting from low profit margin and multi-

transaction cases. In non-attack datasets, the true negative

rates are significantly improved (98.51%) for High-Gas and
(99.48%) for Regular after incorporating P1 and P2. The re-

maining false positives are primarily caused by arbitrage,

complex transactions, and add/remove liquidity actions.

Non-attack
Dataset Attack High-Gas Regular

Size 54 1,075 19,989
Gas Cost 6.89 ± 3.37M 2.14 ± 1.38M 0.24 ± 0.26M

Generic Rule (cf. Section 5.5)

Traversal Time 32 ± 17ms 7 ± 27ms 2.2 ± 1.1ms
TP (%) 53 (98.15%) - -
FN (%) 1 (1.85%) - -
Multi-tx 1/1 - -

TN (%) - 322 (29.95%) 18,410 (92.10%)
FP (%) - 753 (70.05%) 1,579 (7.90%)

Refined Rule (Generic Rule + Refinement P1, P2)

Traversal Time 47 ± 23ms 10 ± 24ms 2.4 ± 1.5ms
TP (%) 51 (94.44%) - -
FN (%) 3 (5.56%) - -
Low profit 2/3 - -
Multi-tx 1/3 - -

TN (%) - 1,059 (98.51%) 19,886 (99.48%)
FP (%) - 16 (1.49%) 103 (0.52%)
Arbitrage - 0/16 29/103
Complex DeFi - 10/16 2/103
Add/Remove liquidity - 6/16 72/103

manipulation attacks follow a swap-and-borrow pattern, where
significant influence on the relative price through swaps is essential
for the exploitation process. High-slippage swaps are uncommon
for typical users. By focusing on swap pool contracts, we avoid
false positive examples caused by depositing or withdrawing tokens.
For example, a function called doHardWork interacts with Harvest
Finance contracts,4 performing complicated actions that trigger the
price manipulation rule while the swap amount remains small. This
refinement effectively excludes such transactions.

6.4.2 Refinement P2 - Assessing Absolute Value Changes. In Re-
finement P2, we calculate the absolute USD value changes of swap
pools by utilizing the asset flows in EPG and historical token prices
from an online database. This approach is especially effective in
eliminating false positive cases in small-scale arbitrage transactions
and intricate DeFi transactions, as the compounding process only
trades existing profits. By monitoring and evaluating the absolute
value changes, we can effectively differentiate between legitimate
transactions and potential price manipulation attempts. This refine-
ment enhances the overall accuracy of the detection process.

4An example transaction of the doHardWork function: 0xcb4e7c976b4751cd93e758001
135612bdd3da276b2f81814c924391d7e985f55
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6.4.3 Refined Performance. After applying the domain-specific im-
provements, Clue demonstrates a FNR of 5.56% and FPR of 1.49%
and 0.52% in the High-Gas and Regular datasets, respectively. The
false positive cases in the High-Gas dataset primarily fall into two
categories: add/remove liquidity and arbitrage, accounting for ap-
proximately 70% and 30% of the false positive cases, respectively. In
the Regular dataset, 10 false positive cases resulted from large-scale
swap operations in complex DeFi transactions, while 6 transactions
were categorized as add/remove liquidity.

6.4.4 False Negative Analysis of the Refined Rule. In the Attack
dataset, two transactions are marked by low profit margins, leading
to their false negative classification.

6.4.5 False Positive Analysis of the Refined Rule. After applying
the refined rule in the High-Gas dataset, 10 of the false positive
cases fresulted from large-scale swap operations in complex DeFi
transactions, including deposit, withdraw and compounding while
other 6 transactions are categorized as add/remove liquidity. After
applying the refined rule in the Regular dataset, the false positive
cases fell into two categories: add/remove liquidity and arbitrage,
accounting for approximately 70% and 28% among the false positive
cases, respectively. The former type contains actions of adding
liquidity to or removing liquidity from swap pools, which performs
swap operations at the beginning. The former type encompasses
large-scale arbitrage transactions with significant earnings. These
transactions profit from the price difference between swap pools.

6.4.6 Challenges. Detecting price manipulation attacks in DeFi ap-
plications is a challenging task due to the complexity and diversity
of the underlying transactions. By incorporating domain-specific
knowledge, Clue not only improved its accuracy but also demon-
strated its adaptability and extensibility. However, some challenges
remain, such as detecting multi-transaction attack events and dis-
tinguishing between large-scale legitimate swap operations and
price manipulation attempts. Further research and refinement are
necessary to develop more sophisticated techniques to tackle these
challenges effectively.

6.4.7 Summary. Clue exhibits remarkable performance in detect-
ing price manipulation attacks using the refined rule, with a FNR
of 5.56% and FPR of 1.49% and 0.52% in the High-Gas and Regular
datasets, respectively. Furthermore, the incorporation of domain-
specific knowledge and the refined filteringmechanisms have demon-
strated the system’s adaptability and extensibility in addressing the
complex landscape of DeFi applications.

6.5 Traversal Performance Overhead

Our time performance evaluation focuses on the overhead associ-
ated with graph traversals. As demonstrated in Tables 1,2, and 3,
for attack transactions, Clue completes detection within an av-
erage time of 1s. In the Regular dataset, traversal time averages
below 100ms, with a majority (89.6%) taking less than 20ms. It is
crucial to mention that our prototype has not been optimized for
performance. Consequently, the refined rule for faulty access con-
trol detection applied to the High-Gas dataset, which represents
transactions with complex logic, requires an average of 8s. The
remaining traversals on the High-Gas dataset finishes under 1s

on average. For reference, the block interval of Ethereum is 12s.
Our evaluation highlights the efficacy of our traversal approach,
demonstrating its strong potential for online detection scenarios.

7 RELATEDWORK

Graph-based Static Program Analysis. Graphs have become the
fundamental building blocks in the field of program analysis. In
tasks such as program optimization and vulnerability discovery,
the utilization of various types of graphs, including AST, CFG, and
PDG, is essential for achieving accurate and reliable results. Com-
bining AST, CFG, and PDG, Yamaguchi et al. [31] first introduce
the concept of code property graph (CPG), which represents pro-
gram source code as a property graph. Such a comprehensive view
of code enables rigorous identification of vulnerabilities through
graph traversals. CPG has been shown to be effective in identifying
buffer overflows, integer overflows, format string vulnerabilities,
and memory disclosures [31]. Giesen et al. [11] apply the CPG ap-
proach to smart contracts and propose HCC. HCC models control-
flows and data-flows of a given smart contract statically as a CPG,
which allows efficient detection and mitigation of integer overflow
and reentrancy vulnerabilities. Inspired by the previous studies, we
propose the EPG to model the dynamic contract execution details
as a property graph. Compared to the static approaches, the EPG
captures runtime information exposed from the concrete executions
and hence complements the contract security analysis, particularly
in the online and postmortem scenarios.
Smart Contract Dynamic Analysis. Previous studies in the field
of smart contract dynamic analysis have primarily focused on two
key directions, (i) online attack detection and (ii) forensic analysis.
• Online Attack Detection. Grossman et al. [12] develop a polyno-

mial online algorithm for checking if an execution is effectively
callback free, a property for detecting reentrancy vulnerabilities.
Rodler et al. [25] introduce Sereum, a runtime solution to de-
tect smart contract reentrancy vulnerabilities. Sereum exploits
dynamic taint tracking to monitor data-flows during contract
execution and applies to various types of reentrancy vulnera-
bilities. Chen et al. [7] develop SODA, an online framework for
detecting various smart contract attacks.

• Forensic analysis. Perez and Livshits [21] propose a Datalog-based
formulation for performing analysis over EVM execution traces
and conduct a large-scale evaluation on 23,327 vulnerable con-
tracts. Zhou et al. [34] undertake a measurement study on 420M
Ethereum transactions, constructing transaction trace into action
and result trees. The action tree gives information of contract
invocations, while the result tree provides asset transfer data,
which are then compared against predefined attack patterns.
Zhang et al. [32] design TxSpector, a logic-driven framework to
investigate Ethereum transactions for attack detection. TxSpec-
tor encodes the transaction trace into logic relations and identi-
fies attacks following user-specified detection rules.

Smart Contract and DeFi Attacks. There has been a growing
body of literature examining the prevalence of smart contract at-
tacks, with a particular emphasis on those targeting DeFi platforms.
Qin et al. [23] study the first two flash loan attacks and propose
a numerical optimization framework that allows optimizing DeFi
attack parameters. Li et al. [16] conduct a comprehensive analysis
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of the real-world DeFi vulnerabilities. Zhou et al. [33] present a
reference framework that categorizes 181 DeFi attacks occurring
between April 2018 and April 2022, related academic papers, as well
as security audit reports into a taxonomy.

8 CONCLUSION

In this paper, we have presented a versatile dynamic analysis frame-
work specifically tailored for the EVM, shedding light on the press-
ing need to improve smart contract security in today’s rapidly ex-
panding DeFi landscape. Our proposed approach, centered around
the new EPG and graph traversal technique, offers a novel, efficient,
and effective method for identifying potential smart contract at-
tacks, transcending limitations of other techniques by capturing
valuable runtime information. The successful detection of a zero-
day vulnerability affecting Uniswap, along with solid true positive
rates, highlight the strength of our framework.
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A MONOX PROTOCOL HACK CASE STUDY

On the 30th of November, 2021, a DeFi protocol MonoX was tar-
geted by one Ethereum transaction causing a total loss of 31M USD
to liquidity providers.5 MonoX is an Automated Market Maker
protocol that holds more than two tokens in the same liquidity
pool. Therefore, MonoX relies on a price oracle for market price
discovery. This internal oracle allows updating its price within a
single transaction. Related work has shown that such oracles can
be manipulated through e.g., sizable transaction volumes, readily
available through flash loans [23].

While this oracle manipulation may appear trivial, there are
two main difficulties in executing the MonoX attack. First, from
the transaction trace it is non-obvious that the attack carried out
an oracle manipulation. Second, the oracle manipulation requires
the concatenation of a second issue to drain the entire MonoX
smart contract. We will dissect the details in the following and start

5Transaction hash: 0x9f14d093a2349de08f02fc0fb018dadb449351d0cdb7d0738ff69cc6fe
f5f299
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1 contract Monoswap {
2 function removeLiquidity (address _token , uint256 liquidity ,
3 address to , uint256 minVcashOut , uint256 minTokenOut
4 ) external returns(uint256 vcashOut , uint256 tokenOut) {
5 (vcashOut , tokenOut) = _removeLiquidityHelper (_token , liquidity , to, minVcashOut ,
6 minTokenOut , false);
7 }
8
9 function swapExactTokenForToken(
10 address tokenIn ,
11 address tokenOut ,
12 uint amountIn ,
13 uint amountOutMin ,
14 address to ,
15 uint deadline
16 ) external virtual ensure(deadline) returns (uint amountOut) {
17 amountOut = swapIn(tokenIn , tokenOut , msg.sender , to, amountIn);
18 require(amountOut >= amountOutMin , 'MonoX:INSUFF_OUTPUT ');
19 }
20 }

Listing 2: MonoX vulnerable contract

1 {
2 "gas": 4684892,
3 "failed": false ,
4 "returnValue": "",
5 "structLogs": [
6 ...,
7 {
8 "pc": 1164,
9 "op": "SSTORE",
10 "gas": 5718423,
11 "gasCost": 20000,
12 "depth": 2,
13 "stack": [
14 "0xd0e30db0",
15 "0x3d2",
16 "0x16345785d8a0000",
17 "0x16345785d8a0000",
18 "0xbb1cc82d95791a1a9ca876fa9a5c6956b2ce21989bd57cca42dcdd3cbf705c6"
19 ],
20 "memory": [
21 "000000000000000000000000 f079d7911c13369e7fd85607970036d2883afcfd",
22 "0000000000000000000000000000000000000000000000000000000000000003",
23 "0000000000000000000000000000000000000000000000000000000000000060"
24 ],
25 "storage": {
26 "0bb1cc82d95791a1a9ca876fa9a5c6956b2ce21989bd57cca42dcdd3cbf705c6":

↩→ "000000000000000000000000000000000000000000000000016345785 d8a0000"
27 }
28 },
29 ...,
30 ]
31 }

Listing 3: Transactioin trace of the MonoX attack transaction. "structLogs" is an array recording the EVM stack, memory, and

storage, following the execution of every opcode. The presented transaction trace captures in total 596,302 opcodes.

by showing the related vulnerable contract code in Listing 2. The
high-level flow of the MonoX attack operates as follows.

1 The attacker A exchanges 0.1 WETH for 79.9 MONO on
Monoswap. This is a regular exchange following the market
price prior to the attack.

2 A drains all MONO tokens from Monoswap, while not af-
fecting other tokens in the exchange. The removeLiquidity
function (cf. Listing 2) does not have a permission check.
Therefore, A is able to remove liquidity for any liquidity

provider. Note that A does not profit from this step, be-
cause the removed liquidity is sent back to the liquidity
providers.

3 A adds a tiny amount (2 × 10−10) of MONO liquidity into
Monoswap. Such shallow liquidity allows A to effectively
manipulate the MONO price in step 4 .

4 A repeats exchanging MONO for MONO at Monoswap.
The swapExactTokenForToken function allows exchanges
between the same token. Because the price oracle updates
atomically after every swap in Monoswap, the MONO price
is increased by 161,700,000,000× after 55 swaps of MONO.
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1 pragma solidity ^0.8.0;
2
3 contract DataFlow {
4 uint totalBalance;
5 mapping(address => uint) balances;
6 address callee;
7
8 fallback () external payable {
9 totalBalance = address(this).balance;
10 balances[msg.sender] += msg.value;
11 callee.call(abi.encode(totalBalance));
12 }
13 }

Listing 4: Example for Clue data-flow tracking.

5 The price manipulation in step 4 increases the price of
MONO. A purchased MONO in step 1 , which now has a
value that is 161,700,000,000× higher than before the attack.
The attacker can hence capitalize on the attack by selling
MONO against the other tokens in the MonoX exchange.

B IMPLEMENTATION DETAILS

B.1 Overview

Clue supports both online and offline modes.

Online Mode In the online mode, Clue is integrated with a full
node, which receives unconfirmed transactions from the P2P net-
work. Clue injects a callback function into EVM. This injected
callback function, also known as EVM tracing, is supported by most
EVM implementations (e.g., go-ethereum). Our design hence en-
sures minimal code change on the EVM side. While executing a
transaction, EVM invokes the callback function and exposes the
runtime information (e.g., the opcode at every step) for further
investigation.
Offline Mode In the offline mode, Clue takes the execution trace
of a transaction, provided by an archive node, as the input to recover
the runtime details. To be compatible with the callback injection
design, we devise a trace simulator, which allows the EVM emulator
to inject the same callback function as the online mode. The trace
simulator parses the transaction execution trace and invokes the
callback function as if the transaction is executed in the real EVM.

By tracking the transaction execution, Clue builds the data, control,
and asset flows, fromwhich Clue further generates the CTG, DCFG,
DDG and constructs the EPG.

B.2 Data-Flow Tracking

To track data flows, the EVM emulator employed in Cluemaintains
its own stack, memory, and storage, where data tags are stored.
These data tags indicate the sources of corresponding data in EVM.
For instance, the emulator pushes a data tagmarked as storage to the
emulated stack when the EVM loads a storage variable to its stack.
We include the detailed location information in data tags (e.g., con-
tract address and slot for storage) if applicable. Data tags propagate
following copy, logical, and arithmetical instructions. A data tag can
be multisource, when it is, for example, the outcome of an arithmeti-
cal operation on variables from different sources. Specially, for con-
tract storage, we also track the data-flow for the storage slot. Clue

moreover captures the implicit data flow that is not directly observ-
able. In the DataFlow contract, the fallback function accepts ETH
and updates the storage variable totalBalance (line 9, Listing 4).
It appears that the data flow is from address(this).balance to
totalBalance. However, the contract balance is incremented by
msg.value when fallback is invoked. Therefore, these exists a
latent data flow from msg.value to totalBalance. Clue tracks
account balances and call values as special variables and hence can
capture such implicit data flow. As discussed in Section 4.2.3, Clue
maintains the full change history of contract storage and account
balance. By following the input and output of contract invocations,
Clue also tracks cross-contract data flows. For example, in Listing 4,
totalBalance is used as a parameter of the call to callee (line 11).

B.3 Control-Flow Tracking

EVM implements program control through code jumps (cf. Sec-
tion 4.2.2). Clue meticulously tracks the control flows by recording
the code jump opcodes, specifically JUMP and JUMPI, as well as
the corresponding basic blocks. In the case of conditional jumps
(JUMPI), Clue also records the data flows of the jump conditions.
This information is crucial for the identification of vulnerabilities,
including reentrancy, as discussed in Section 5.3.

B.4 Asset-Flow Tracking

Tracking ETH transfers is a relatively straightforward process
within Clue. Clue filters the relevant opcodes (i.e., CALL, CREATE,
CREATE2, and SELFDESCTUCT) and then determines if there is an
ETH transfer.

In contrast, tracking the transfers of contract-realized assets is
more complex due to the diverse range of contract implementations.
In this work, we mainly focus on ERC-20, the de facto standard
of fungible tokens on the EVM-compatible blockchains, especially
in the DeFi ecosystem. The ERC-20 standard defines a Transfer
event, which is emitted upon the execution of a token transfer.
By matching the Transfer event during transaction execution, we
record the ERC-20 transfer when a match is found. This method can
also be applied to non-fungible token standards, such as ERC-721.

It should be noted that the event matching mechanism may
introduce false positives. For example, an adversary might create a
malicious contract that emits the Transfer event without actually
transferring assets, in an attempt to confuse the transaction analysis.
To mitigate this, additional filtering conditions can be employed,
such as an allowlist that only tracks contracts of interest.

15

https://geth.ethereum.org/docs/evm-tracing/

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain and Decentralized Finance
	2.2 Ethereum Virtual Machine
	2.3 Smart Contract Security

	3 Smart Contract Execution Representations
	3.1 Running Example
	3.2 Call Trace Graph
	3.3 Dynamic Control-Flow Graph
	3.4 Dynamic Dependence Graph
	3.5 Graphs on EVM Bytecode

	4 Execution Property Graph
	4.1 Property Graph
	4.2 Formalizing Basic Representations
	4.3 Constructing the Execution Property Graph

	5 Traversals based Security Analysis
	5.1 Rationale
	5.2 Graph Traversal Basics
	5.3 Reentrancy
	5.4 Faulty Access Control
	5.5 Price Manipulation

	6 Experimental Evaluation
	6.1 Evaluation Design
	6.2 Reentrancy
	6.3 Faulty Access Control
	6.4 Price Manipulation
	6.5 Traversal Performance Overhead

	7 Related Work
	8 Conclusion
	References
	A MonoX Protocol Hack Case Study
	B Implementation Details
	B.1 Overview
	B.2 Data-Flow Tracking
	B.3 Control-Flow Tracking
	B.4 Asset-Flow Tracking


