LR

23 ==

|

DECENTRALIZED INTELLIGENCE

Smart Contract Code Assessment

Produced for

&b SwissBorg



Executive Summary

This executive summary outlines the key findings and recommendations from the se-
curity assessment conducted for SwissBorg, May 2023. The assessment’s aim was to
assess the security of the provided smart contracts, identify potential vulnerabilities,
and propose suggestions to potentially mitigate risks.

Scope ofthe Assessment The assessment covered two smart contracts outlined in 1.

Key Findings Our comprehensive analysis of the smart contracts has brought to light
several significant concerns that merit attention:

« Security Risks. During our review, we pinpointed three potential security vul-
nerabilities that could potentially compromise the integrity and safety of the
system.

« Informational Findings. Additionally, we have come across three informational
aspects that, while not immediately threatening, could be enhanced to improve
the contract’s code quality.

Recommendations Based on these key findings, we propose the following actions:

* Vulnerability Remediation. Address the identified security vulnerabilities imme-
diately. We suggest implementing necessary code modifications and retesting
to ensure these risks have been successfully rectified.

Conclusion Ourassessment has revealed some security vulnerabilities in SwissBorg's
smart contracts that need attention. Addressing these issues promptly will enhance
the platform’s security, leading to safer transactions and increasing confidence.

This executive summary provides a concise synopsis of our findings. We recommend
reading the full assessment report for a comprehensive understanding of the vulner-
abilities identified, potential impacts, and our suggested mitigation strategies.

We look forward to supporting SwissBorg with the remediation of these vulnerabilities
and conducting further assessments to maintain the integrity and security of the smart
contracts.



1. Assessment Overview

In this section, we provide an overview of the assessment scope.

11 Scope

The assessment was performed on the following two solidity files:

1. ./vault/EarnVault.sol
sha512:0x404a732a7b1183841€10364291e405b96ca7a1cc7ba2ofbdffees3992c3cc2
051f982292cof9f1bs53fb3a7ad6889ecs4446346036f12bf44549016a257aa115fe

2. ./yield/module/AaveYieldModule.sol
sha512:0x064632aa40ae163274390e7aa1242b417fedagdo383b253e94b7503e65faa
7c2d3c256besad11f88baose1fda5959e100002d21ch009993f8cc298be823f53f8

The solidity compiler version 0.8.13 was chosen.

Excluded from scope

Files not specified in the scope section — particularly test files, scripts, external de-
pendencies, and configuration files — are not included in the assessment scope.

1.2 System Overview

1.2 EarnVault.sol

The EarnVault contract primarily works with three roles: OWNER_ROLE, MANAGER_ROLE,
and GUARDIAN_ROLE (referred to as owner, manager, and guardian respectively here-
inafter), each with different levels of authority and responsibilities. The roles are as-
signed during the initialization phase, which also sets up the vault’s basic parameters,
such as the initial token price feed, strategy, and status.

The contract manages deposits of a specified token (the want token) into a specific
strategy defined by a yield-generating module, which can be modified by the owner
when the vault is inactive. The strategy’s balance is kept track of by the vault and is
updated upon each deposit or withdrawal operation.

The contract’s status can be “Active” or “Inactive”, with operations like deposit, with-
draw, and harvest only allowed during “Active” status. In emergency situations, the
vault can be stopped, and funds can be withdrawn from the strategy. The guardian
role is responsible for such operations. The vault can be resumed by the owner after
being made inactive.



D23E — Decentralized Intelligence AG Dz

Furthermore, the contract supports upgradeability through UUPS (Universal Upgrade-
able Proxy Standard), which means the underlying logic of the contract can be up-
graded by the owner without affecting the state or address of the deployed contract.

The contract also includes safety features, such as the rescue function to recover
stuck funds and validation checks to prevent transactions with zero-address or zero-
amount.

1.2.2 AaveYieldModule.sol

AaveYieldModule acts as an interface for interacting with the Aave DeFi lending pro-
tocol. The contract is an extension of a BaseModule, and uses a variety of different
contracts and interfaces to interact with the Aave protocol.

One important aspect of this contract is the initialization function, which is responsi-
ble for setting up all necessary parameters. These include various contract addresses,
rewards, and fees. This function also approves the transfer of tokens (termed want)
to the Aave pool.

The contractincludes functions for depositing tokens into Aave and withdrawing them.
The withdraw function calculates the actual amount of want tokens withdrawn. A no-
table feature of this contract is the getMaxWithdrawableAmount function, which cal-
culates the maximum amount that can be withdrawn from the protocol at any given
time.

The harvest function is used to claim any rewards earned from the Aave protocol. The
rewards are transferred to the caller in the form of want tokens.

To help users keep track of their investments, the contract offers getBalance and
getLastUpdatedBalance functions. These return the current and last updated bal-
ances of want tokens on Aave, respectively.

The contract also includes a getExecutionFee function that returns the fee required
for withdrawals from Aave. In this case, the fee is set to zero.

Additionally, the contract includes a number of private helper functions. These func-
tions calculate profit, collect pool data, get available liquidity, and handle the with-
drawal process.

Page 3 of 7



2. Detailed Findings

In this section, we outline the potential security risks.

24 EarnVault.sol

No critical risk is found.

2.2 AaveYieldModule.sol

2.21 Infinite Approval Risk
Description

Thefunction initialize presentsanissue commonly referred to as “infinite approval”.
Specifically, the line

IERC20Upgradeable (_want) .safeApprove (_params._pool, type(uint256) .max);

provisionally grants an unlimited allowance to the _params._pool address. This opens
the potential for the contract to be subjected to risks if the _params._pool contract is
either compromised or operates with malicious intent. With the granted unlimited ap-
proval, the _params._pool could theoretically drain all the _want tokens from this con-
tract without necessitating any additional permissions. Although AaveYieldModule
isn't inherently designed for asset storage, the utilization of “infinite approval” can
potentially be exploited in conjunction with other vulnerabilities, such as reentrancy
attacks.

Recommendation

To address this vulnerability, it is advised to set precise allowances within the deposit
function, rather than resorting to the provision of infinite approval. It is considered a
best practice to set allowances equal to exactly what is required, without any surplus.
This approach ensures a more secure, predictable contract interaction while limiting
the potential scope of an attack.

2.2.2 Reentrancy Risk
Description

A potential reentrancy vulnerability exists in the _1pProfit function. Specifically, the
function call TPoolAave (pool) .withdraw(want, aumDelta, address(this)) permits
external interaction that could potentially exploit the not-yet-updated state variable
lastPricePerShare. Despite _1pProfit being a private function, exclusively triggered
by harvest-a function that is protected by onlyVault-the risk of reentrancy persists.



D23E — Decentralized Intelligence AG Dz

This is particularly concerning if the vault contract is either compromised or inher-
ently vulnerable.

Recommendation

As a mitigation measure, it is recommended to implement checks-effects-interactions
pattern. The state variable lastPricePerShare should be updated before calling ex-
ternal contracts to help prevent potential reentrancy attacks.

2.2.3 Missing Slippage Protection
Description

The function _rewardsProfit incorporates a swap operation that unfortunately lacks
an essential element of slippage protection. More specifically, the instruction

IDex(dex) .swap(rewardBalance, rewards[0], want, address(this));

is tasked with swapping the accumulated rewardBalance amount of rewards[0] to-
kens for want tokens. However, in this process, no constraints are imposed on the
minimum amount of want tokens expected to be received from the swap. In situations
of unfavorable market conditions, this could result in receiving a significantly lower
quantity of want tokens than initially anticipated. This deficiency not only exposes
the contract to potential front-running and sandwich attacks, resulting in consider-
able losses, but it could also be exploited in conjunction with reentrancy attacks.

It is understood that in general circumstances, the exchange from aToken to want has
zero slippage. However, in extreme scenarios, for example, if Aave experiences issues
and redemption from aToken to want is forbidden, it may be necessary to resort to al-
ternative exchanges. Therefore, even though the current implementation might work
under regular conditions, it is prudent to prepare for exceptional circumstances by
embedding slippage protection.

Recommendation

In order to mitigate this risk, it is advisable to integrate slippage protection into the
swap operation. A prevalent approach to accomplish this is by setting a parameter
that clearly delineates the minimum acceptable quantity of want tokens to be received
from the swap. If the actual amount of tokens received falls short of this threshold,
the transaction should be programmed to automatically revert. Implementing this
protective measure safeguards against extreme slippage events. Consequently, the
IDex(dex) .swap function might necessitate modifications or even replacement with
a function that allows for the specification of a minimum output. It is important to
highlight that the chosen minimum should take into account a reasonable degree of
slippage in order to prevent transaction failures amid normal market volatility.

Page 5 of 7



3. Informational

In this section, we show the informational findings that are less severe than the se-
curity risks.

31 EarnVault.sol

341 Unchecked wantPriceFeed Initialization
Description

Inthe initialize function, there is an issue related to the lack of validation checks
for the wantPriceFeed parameter.

Recommendation

It is recommended to add checks to validate that the wantPriceFeed parameter is a
non-zero address.

3.2 AaveYieldModule.sol

3.21 payable Inconsistency
Description

There is an inconsistency between the withdraw and _withdraw functions concerning
the payable keyword and a require check for msg.value. Specifically, the withdraw
function is marked as payable, while the subsequent _withdraw function, called within
withdraw, includes the line

require(msg.value == 0, "Aave: msg.value must be zero");

This line mandates that the msg.value of the transaction should be zero, essentially
negating the payable keyword in the withdraw function.

However, this could be a reasonable design if the developer intends to show the de-
tailed error message when msg.value is not zero, explicitly indicating that the function
does not accept Ether, despite the payable keyword.

3.2.2 Function State Mutability

Recommendation

The function state mutability of _getAvailableLiquidity can be restricted to pure.



4. Disclaimer

The reportis provided solely for informational purposes and should not be considered
as an endorsement, recommendation, or any form of legal, financial, or investment
advice.

The report is based on the technical analysis of the code at the time of assessment and
does not account for any updates, modifications, or alterations to the code that may
occur after the report date. The code was assessed “as-is” and the findings represent
the state of the code at the time of the assessment.

Although every reasonable effort has been made to ensure the accuracy, complete-
ness, and fairness of the analysis and findings contained within the report, it is pro-
vided on an "as-is" basis without any warranties, representations, or guarantees of
any kind, express or implied. This includes, but is not limited to, warranties of mer-
chantability, fitness for a particular purpose, non-infringement, accuracy, or the pres-
ence or absence of errors, whether or not discoverable.

The authors, evaluators, and any associated parties disclaim all liability for any losses,
damages, costs, or expenses (including legal fees) arising directly or indirectly from
the use of or reliance on the report or its findings. This includes, but is not limited to,
any damage or loss caused by errors, omissions, inaccuracies, or any misleading or
out-of-date information.

The reader is solely responsible for any actions or decisions taken based on the in-
formation provided in this report. It is highly recommended that, where necessary,
appropriate professional advice is sought before making any decisions or taking any
actions relating to the smart contract code analyzed in this report.



