
ED
DECENTRALIZED INTELLIGENCE

23

Audit Report

Produced for

BX Digital

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

0.1 Introduction

This report provides a thorough and detailed examination of the DeliveryVersusPay-
ment (DVP) smart contract system, which harnesses smart contract capabilities to
facilitate secure, transparent, and efficient asset exchanges within financial transac-
tions. The system is meticulously crafted to elevate transaction transparency, velocity,
and dependability while proactively addressing and mitigating associated risks.

At the core of the system lie the DeliveryVersusPayment contracts, available in two
distinct iterations, serving as its foundational bedrock. These contracts deliver a spec-
trum of services to clients seeking to execute ERC20-standard token deliveries with
utmost security. Moreover, the DeliveryVersusPayment contracts incorporate features
allowing clients to retract orders prior to confirmation, thereby enhancing system flex-
ibility.

Throughout this report, we present our findings with clarity, brevity, and quantita-
tive precision, ensuring our clients gain a comprehensive understanding of potential
system vulnerabilities and recommendations for further fortification.

0.1.1 Scope

The audit and fuzzing was performed on the following one solidity file:

• contracts/DeliveryVersusPaymentV2.sol
sha256: f3f81c9968ab2c7e8772e92bc32e552b37196470eea5bb389afb6e5ae7eb094e

0.1.2 Excluded from scope

Files not specified in the scope section — particularly test files, scripts, external de-
pendencies, and configuration files — are not included in the scope.

0.2 Automated Findings

The client’s smart contract(s) were analyzed using the Slither1 static analysis tool.
The tool reported a total of 1 contracts in the source files and 25 contracts in the
dependencies. No assembly code was detected in the contracts.

The analysis revealed 1 informational issues and 1 low severity issues.

The following table summarizes the key statistics for each contract:

Name functions ERCs Features

DeliveryVersusPaymentV2 51 ERC165 Receive token, Send token,
Delegatecall, Upgradeable

1https://github.com/crytic/slither

Page 1 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

0.2.1 Issues Detected

The Slither analysis reported the following issues:

Arbitrary from address in transferFrom (Low severity, not valid)

The createTradeAndLockTokens function in DeliveryVersusPaymentV2 contracts uses
an arbitrary from address in the transferFrom function call, which may lead to a con-
trol leak if the token implements ERC7772 standard or has any hooks calling the asset
holder when doing transfers. However, we do not considered this a valid issue be-
cause the trades mapping could prevent reentrancy attacks, and the function has
strict access control.

Local Variable Shadowing (Informational)

The increaseAllowance and decreaseAllowance functions in the AssetToken contract
have local variables named owner that shadow the owner function from the Ownable
contract. This is considered an informational issue and does not appear to pose a
security risk.

In summary, the automated analysis did not reveal critical issues that would pose a
significant risk to the functionality or security of the smart contracts. The reported
issues related to reentrancy may be mitigated by the design of the contracts.

0.3 Fuzzing Report

The fuzzing process was initially planned to be conducted over a period of 72 hours.
However, the exhaustive search of a single oracle completed within 1 hour (47 minutes
to be exact). The fuzzer utilized the initialization script, shown below, to set up the
necessary state for the fuzzing campaign. This script (cf. Listing 1) simulated the pres-
ence of a confirmed or cancelled order, enabling the fuzzer to test the contract under
various scenarios.

1 contract DvpScript is Script {
2 AssetToken token;
3 Proxy proxy;
4 DeliveryVersusPaymentV2 dvp;
5
6 uint256 AMOUNT = 10 ether;
7 address public sender = 0x23618e81E3f5cdF7f54C3d65f7FBc0aBf5B21E8f;
8 address public receiver = 0xa0Ee7A142d267C1f36714E4a8F75612F20a79720;
9

10 function setUp () public {
11 token = new AssetToken ();
12 dvp = new DeliveryVersusPaymentV2 ();
13 proxy = new Proxy(address(dvp));

2https://eips.ethereum.org/EIPS/eip-777

Page 2 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

14 console.log("Token address", address(token));
15 console.log("Dvp address", address(dvp));
16 console.log("Proxy address", address(proxy));
17
18 // Init the dvp contract
19 proxy.initialize ();
20
21 // give seller 100 ether tokens: prepare for the test
22 token.mint(sender , AMOUNT * 2);
23
24 // Seller approves the dvp contract
25 uint256 deployerPrivateKey = vm.envUint("SELLER_PRIVATE_KEY");
26 vm.startBroadcast(deployerPrivateKey);
27 token.approve(address(proxy), type(uint256).max);
28 vm.stopBroadcast ();
29 }
30
31 function run() public {
32 // 1. Test confirmPayment ()
33 // 1.1 Sender approves the dvp contract ,
34 // 1.2 proxy ’s oracle executes createTradeAndLockTokens (),
35 // 1.3 proxy ’s oracle executes confirmPayment (),
36 // 1.4 Sender decreases 10 ether , Receiver gets 10 ether.
37 toTestConfirmPayment ();
38 // 2. Test confirmPayment ()
39 // 2.1 Sender approves the dvp contract ,
40 // 2.2 proxy ’s oracle executes createTradeAndLockTokens (),
41 // 2.3 proxy ’s oracle executes cancelTrade (),
42 // 2.4 Sender cancels the order and gets 10 ether back ,

Receiver gets 0 ether.
43 toTestCancelTrade ();
44 }
45
46 function toTestConfirmPayment () public {
47 bytes32 tradeId = bytes32(uint256 (1));
48 address assetAddress = address(token);
49 uint64 timestamp;
50 bytes32 theHash = keccak256(abi.encode(tradeId , sender , receiver ,

assetAddress , AMOUNT , timestamp));
51 proxy.createTradeAndLockTokens(theHash , sender , assetAddress ,

AMOUNT);
52
53 proxy.confirmPayment(theHash , tradeId , sender , receiver ,

assetAddress , AMOUNT , timestamp);
54
55 }
56
57 function toTestCancelTrade () public {
58 bytes32 tradeId = bytes32(uint256 (2));
59 address assetAddress = address(token);
60 uint64 timestamp;
61 bytes32 theHash = keccak256(abi.encode(tradeId , sender , receiver ,

assetAddress , AMOUNT , timestamp));

Page 3 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

62 proxy.createTradeAndLockTokens(theHash , sender , assetAddress ,
AMOUNT);

63
64 proxy.cancelTrade(theHash , tradeId , sender , receiver ,

assetAddress , AMOUNT , timestamp);
65 }
66 }

Listing 1: Fuzzing setup script.

The script creates instances of the AssetToken, DeliveryVersusPaymentV2, and Proxy
contracts. It initializes the DVP contract, mints tokens for the seller, and approves the
DVP contract to spend the seller’s tokens.

The fuzzer yielded the following key statistics in Table 1:

Metric Count

Total Test Cases 40,814
Valid Test Cases 20,470
Successfully Executed 14,144
ABI Interface Coverage 7/7

Table 1: Fuzzing output statistics.

The fuzzing campaign generated a total of 40,814 test cases, out of which 20,470 (50.15%)
were valid. These valid test cases were then executed, resulting in 14,144 (69.10%) be-
ing successfully executed.

The fuzzer achieved complete path coverage of the contract’s ABI interface, testing
all 7 functions (by path we mean a combination of actions, not including all possible
parameters). This comprehensive coverage ensures that all accessible functions were
thoroughly exercised during the fuzzing process.

With a token leak oracle, the fuzzer did not identify any fund losses or security vul-
nerabilities in the contract under the given test cases. This indicates that the contract
demonstrated robustness and security against these generated inputs.

However, it is important to note that while the absence of identified vulnerabilities
is a positive indicator, it does not guarantee the absence of all potential issues be-
cause only the token leak oracle is employed. Further testing and analysis, such as
manual code review, may be necessary to establish a higher level of confidence in the
contract’s security.

We therefore chose to extend our analysis to an additional four man-days of manual
auditing. Please find its results in the following.

Page 4 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

0.4 Manual Auditing Finding Summary

The following encapsulates our discoveries subsequent to a manual examination of
the DVP contract deployment. The contractual framework leverages oracles to admin-
ister project oversight, yet it is imperative to acknowledge the latent susceptibility to
manipulation should these oracles engage in malicious conduct. Such actions pose
the potential to instigate a Denial of Service (DoS) incident attributable to the inade-
quacies within the system’s verification protocols. Further, given that the AssetToken
is not constrained, it has the potential to represent any ERC20 token. This introduces
a risk of triggering Denial of Service attacks or token locking when the AssetToken rep-
resents slightly non-standard ERC20 tokens. Nonetheless, commendable efficiency is
demonstrated by the contract system in its judicious conservation of gas resources
while concurrently preserving the integrity of its routine operations.

In totality, the contracts manifest commendable attributes of design and engineering.
However, it is imperative to address areas necessitating refinement, notably the iden-
tification of one medium-severity vulnerability, one low-severity vulnerability, and
one informational concern.

ID Severity Title Category Status
PVE-001 Medium AssetAddress can be variable

balance token
Security Features Open

PVE-002 Low Malicious oracle can manip-
ulate the trade order

Security Features Open

PVE-003 Info Front-running possibility
when the oracle is malicious

Business Logics Open

Table 2: Summary of our findings following a manual investigation.

0.5 Detailed Results

0.5.1 AssetAddress can be a variable balance token

Summary3

The DeliveryVersusPayment smart contract system allows clients to deliver any ERC20-
compliant token as the assetToken. However, this flexibility may introduce potential
risks when dealing with tokens that have special functionalities. In particular, the use
of variable balance tokens or fee-on-transfer tokens may lead to issues such as the
locking of funds, loss of funds, and Denial of Service attacks.

Details
3See reference https://github.com/code-423n4/2022-09-vtvl-findings/issues/278

Page 5 of 13

https://github.com/code-423n4/2022-09-vtvl-findings/issues/278

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

In the provided contract, the assetToken, which clients of the project may want to
deliver, can be any token that implements the ERC20 standard interface. In some
cases, the assetToken contract may contain special functionality, such as an inflation
method, which may lead to three potential issues:

1. The variable balance tokens can cause the lock of funds.

2. The variable balance tokens can lead to loss of funds and Denial of Service for
the confirmation or cancelation of an order.

3. The fee-on-transfer tokens can lead to loss of funds and Denial of Service for
the confirmation or cancelation of an order.

Regarding the first potential issue 1, we assume that an inflation token is a variable
balance token that earns interests over time and directly inflates the owners’ balances.
Such tokens include for example $stETH4 and $USD+5. When the seller enters the mar-
ket, our inflation token’s balance will increase over time. When we call confirmPay-
ment() after createTradeAndLockTokens(), it will lock 100 tokens in the dvp since 100
seconds have passed. Under the above scenario, we can therefore conclude, that the
funds locked can no longer be withdrawn from the contract.

1 function test_rebaseToken_inflation_lockingOfFund () public {
2 bytes32 tradeId;
3 address assetAddress = address(inflation_token);
4 uint64 timestamp;
5 bytes32 theHash = keccak256(abi.encode(tradeId , seller , buyer ,

assetAddress , AMOUNT , timestamp));
6 dvp.createTradeAndLockTokens(theHash , seller , assetAddress ,

AMOUNT);
7
8 // When the dvp receives the inflation_token at the beginning ,

the balance is ‘AMOUNT ‘
9 assertEq(inflation_token.balanceOf(address(dvp)), AMOUNT);

10 vm.warp(block.timestamp + 100); // pass 100 seconds
11 // However , the dvp’s inflation_token balance is increasing by

the time.
12 assertEq(inflation_token.balanceOf(address(dvp)), AMOUNT + 100);
13
14 dvp.confirmPayment(theHash , tradeId , seller , buyer , assetAddress ,

AMOUNT , timestamp);
15 // We can only withdraw ‘AMOUNT ‘ inflation_token , left 100 in the

dvp , leading to locking of fund.
16 assertEq(inflation_token.balanceOf(address(dvp)), 100);
17 // The seller can get ‘AMOUNT ‘ inflation_token normally
18 assertEq(inflation_token.balanceOf(address(buyer)), AMOUNT);
19 }

Listing 2: Variable balance token causing a fund lock up.

4Lido Liquid staked Ether 2.0: https://etherscan.io/token/0xae7ab96520de3a18e5e111b5eaab095312d7fe84
5Overnight USD+: https://optimistic.etherscan.io/token/0x73cb180bf0521828d8849bc8cf2b920918e23032

Page 6 of 13

https://etherscan.io/token/0xae7ab96520de3a18e5e111b5eaab095312d7fe84
https://optimistic.etherscan.io/token/0x73cb180bf0521828d8849bc8cf2b920918e23032

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

Regarding the second potential issue 2, we assume that a deflation_token is a bal-
ance variable token that the owners’ balances will reduce over time, as an example,
$PRX token on Ethereum6. When we enter the market, our deflation_token’s balance
will decrease over time. When we call confirmPayment() after createTradeAndLock-
Tokens(), the transaction will revert because the dvp ’s balance is less than AMOUNT:
AMOUNT - 100 < AMOUNT. Under this second scenario, we can therefore conclude, that
the order can neither be confirmed nor cancelled, resulting in a loss of funds and a
DoS situation.

1 function test_rebaseToken_deflation_DoS () public {
2 bytes32 tradeId;
3 address assetAddress = address(deflation_token);
4 uint64 timestamp;
5 bytes32 theHash = keccak256(abi.encode(tradeId , seller , buyer ,

assetAddress , AMOUNT , timestamp));
6 dvp.createTradeAndLockTokens(theHash , seller , assetAddress ,

AMOUNT);
7
8 // When the dvp receives the deflation_token at the beginning ,

the balance is ‘AMOUNT ‘
9 assertEq(deflation_token.balanceOf(address(dvp)), AMOUNT);

10 vm.warp(block.timestamp + 100); // pass 100 seconds
11 // However , the dvp’s deflation_token balance is decreasing by

the time.
12 assertEq(deflation_token.balanceOf(address(dvp)), AMOUNT - 100);
13
14 // The next action will revert: the dvp’s deflation_token balance

is ‘AMOUNT - 100‘ while
15 // that it wants to transfer ‘AMOUNT ‘ defaltion_token. So it

leads to DoS.
16 vm.expectRevert ();
17 dvp.confirmPayment(theHash , tradeId , seller , buyer , assetAddress ,

AMOUNT , timestamp);
18 }

Listing 3: Variable balance token causing fund loss and Denial of Service.

Regarding the third potential issue 3, when the token is a fee-on-transfer token (to-
kens that deduct a fee during the transfer), the transaction will revert, causing a DoS
issue. The $XCHF token7 is for example such a token on the ETH network, and the $ELE-
PHANT token8 is another instance on the BSC network. In the PoC (cf. Listing 4), we
fork from the BSC block height 35196717. When we call the confirmPayment() function
after createTradeAndLockTokens(), the transaction will revert because dvp ’s balance
is less than AMOUNT: 7.2 < 8.0. Under this third scenario, we can therefore conclude,
that the order can neither be confirmed nor cancelled, resulting in a loss of funds and
a DoS situation.

6PRX token: https://etherscan.io/token/0xe8847d2fa66d0d1f4a77221cae1e47d8d59cf7d7
7bitcoinsuisse $XCHF token: https://etherscan.io/token/0xb4272071ecadd69d933adcd19ca99fe80664fc08
8$ELEPHANT token: https://bscscan.com/address/0xD96EC811359BFD94D2dfe2A3Bd8DA68BF262Be1A

Page 7 of 13

https://etherscan.io/token/0xe8847d2fa66d0d1f4a77221cae1e47d8d59cf7d7
https://etherscan.io/token/0xb4272071ecadd69d933adcd19ca99fe80664fc08
https://bscscan.com/address/0xD96EC811359BFD94D2dfe2A3Bd8DA68BF262Be1A

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

1 function test_elephant_DoS () public {
2 // IElephant public elephant = IElephant (0

xD96EC811359BFD94D2dfe2A3Bd8DA68BF262Be1A);
3 bytes32 tradeId;
4 address assetAddress = address(elephant);
5 uint64 timestamp;
6 bytes32 theHash = keccak256(abi.encode(tradeId , seller , buyer ,

assetAddress , AMOUNT , timestamp));
7 // Seller wants to sell for AMOUNT =8.000000000
8 emit log_named_decimal_uint("seller transfer amount", AMOUNT ,

elephant.decimals ());
9 dvp.createTradeAndLockTokens(theHash , seller , assetAddress ,

AMOUNT);
10 // But the dvp only receives 7.200000000
11 emit log_named_decimal_uint("dvp receive amount", elephant.

balanceOf(address(dvp)), elephant.decimals ());
12
13 // Revert: dvp’s balance is less than ‘AMOUNT ‘,

7.200000000 <8.000000000
14 vm.expectRevert("SafeMath: subtraction overflow");
15 dvp.confirmPayment(theHash , tradeId , seller , buyer , assetAddress ,

AMOUNT , timestamp);
16 }

Listing 4: Fee-on-transfer tokens causing fund loss and Denial of Service.

Recommendation

We would like to provide two suggestions to potentially address this issue.

1. Limit the assetAddress to a whitelist of approved tokens. The whitelist should be
managed by the contract maintainer, who can add or remove tokens as needed.

1 // Adding the following codes
2 mapping(address => bool) isTokenWhiteListed;
3 function AddTokenWhiteList(asset address) onlyRole(MAINTAINER_ROLE)

{
4 isTokenWhiteListed[asset] = true;
5 }
6
7 function RemoveTokenWhiteList(asset address) onlyRole(

MAINTAINER_ROLE) {
8 isTokenWhiteListed[asset] = false;
9 }

10
11 // in function ’createTradeAndLockTokens ’, Asset should be in white

list
12 require(isTokenWhiteListed[assetAddress], "Asset token not

whitelisted");

Listing 5: Potential token whitelist fix for issue 0.5.1.

2. Add a balance check before and after the safeTransferFrom function to ensure
that the dvp contract receives the expected amount of tokens. This helps to

Page 8 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

prevent issues with fee-on-transfer tokens, which may deduct a fee during the
transfer and cause DoS problem.

1 function createTradeAndLockTokens(
2 bytes32 tradeHash ,
3 address seller ,
4 address assetAddress ,
5 uint256 amount
6) external onlyRole(TRADE_ORACLE_ROLE) {
7
8 ...
9 uint balanceBefore = IERC20(assetAddress).balanceOf(address(this));

10 // line 142
11 IERC20(assetAddress).safeTransferFrom(seller , address(this), amount)

;
12 require(amount == IERC20(assetAddress).balanceOf(address(this)) -

balanceBefore , "Asset transferFrom verification failed");
13 ...
14 }

Listing 6: Potential balance check fix for issue 0.5.1.

0.5.2 A malicious oracle can manipulate the trade order
Summary

We identified a vulnerability in the createTradeAndLockTokens function, allowing a
malicious entity with TRADE_ORACLE_ROLE privileges to initiate trades with arbitrarily
manipulated token amounts. This is facilitated by the absence of a verification process
for the tradeHash against the actual trade amount, leading to potential unauthorized
asset transfers and contract asset depletion.

Details

The createTradeAndLockTokens function lacks a mechanism to ensure that the tradeHash
accurately represents the trade details such as the token amount. This omission al-
lows a TRADE_ORACLE to submit any tradeHash, which may not correspond to the ac-
tual trade parameters and could represent an arbitrarily large amount. Consequently,
a manipulated tradeHash can be used to establish fictitious trades in the contract’s
records.

This vulnerability is critical in the confirmPayment function, where the integrity of
tradeHash is pivotal. A malicious oracle could confirm an altered trade with an arbi-
trarily large amount, directing tokens to an unauthorized address and possibly deplet-
ing the contract’s assets.

The vulnerability poses a risk due to the potential for complete asset depletion en-
abled by a single compromised or rogue oracle, undermining the trust model of the
contract.

1 // Line 126 in DeliveryVersusPaymentV2.go

Page 9 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

2 function createTradeAndLockTokens(
3 bytes32 tradeHash ,
4 address seller ,
5 address assetAddress ,
6 uint256 amount
7) external onlyRole(TRADE_ORACLE_ROLE) {
8 // Check if the trade already exists
9 TradeStatus currentTradeStatus = trades[tradeHash];

10 if (currentTradeStatus != TradeStatus.NONE) {
11 revert TradeStatusCheckError(tradeHash , currentTradeStatus ,

TradeStatus.NONE);
12 }
13
14 trades[tradeHash] = TradeStatus.ESCROW;
15
16 // transfer tokens from seller to DvP (fails if allowance is

insufficient)
17 IERC20(assetAddress).safeTransferFrom(seller , address(this), amount);
18
19 emit TradeCreatedAndTokensLocked(tradeHash , seller , assetAddress ,

amount);
20 }

Listing 7: Lack of input validation.

Recommendation

To mitigate the vulnerability, we recommend modifying the function createTradeAndLockTokens
and verifyDataHash to (cf. Lisiting 8). We introduce a new formula for tradeHash:
keccak256(abi.encode(seller, assetAddress, amount, keccak256(abi.encode(tradeId,
buyer, timestamp)))). This may ensure that the hash accurately reflects and se-
curely encapsulates key trade parameters while hiding information such as tradeId
and buyer when creating a trade. The verification step prevents unauthorized trans-
actions by compromised oracles, potentially enhancing contract security. For your
convenience we have assessed the impact on gas costs of such change in Table 3.

1 function verifyDataHash_Fixed(
2 bytes32 tradeHash ,
3 bytes32 tradeId ,
4 address seller ,
5 address buyer ,
6 address assetAddress ,
7 uint256 amount ,
8 uint64 timestamp
9) internal pure {

10 bytes32 calculatedHashValue = keccak256(
11 abi.encode(seller , assetAddress , amount , keccak256(abi.encode(

tradeId , buyer , timestamp)))
12);
13 if (tradeHash != calculatedHashValue) {
14 revert IncorrectTradeHash(tradeHash , calculatedHashValue);
15 }

Page 10 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

16 }
17
18 function createTradeAndLockTokens_Fixed(
19 bytes32 tradeHash ,
20 address seller ,
21 address assetAddress ,
22 uint256 amount ,
23 bytes32 checkHash
24) external onlyRole(TRADE_ORACLE_ROLE) {
25 bytes32 calculatedHashValue = keccak256(
26 abi.encode(seller , assetAddress , amount , checkHash)
27);
28 if (tradeHash != calculatedHashValue) {
29 revert IncorrectTradeHash(tradeHash , calculatedHashValue);
30 }
31 ...
32 }

Listing 8: Potential fix for issue 0.5.2.

Function Gas cost

createTradeAndLockTokens 89,226
createTradeAndLockTokensFixed 90,010 (784 ↑)
verifyDataHash 1,080
verifyDataHashFixed 1,220 (140 ↑)

Table 3: Gas consumption comparison before and after suggested fix of issue 0.5.2.

0.5.3 Front-running possibility when the oracle is malicious
Summary

If the oracle is malicious, cancelTrade() and confirmPayment() can be front-run.

Details

All oracles can read the parameters when an oracles call cancelTrade() or confirmPay-
ment(), an oracle may increase the gas price and use the same parameters to perform
front-running.

For example, when the oracle1 wants to call cancelTrade() to cancel the trade order,
oracle2 observes the canceling transaction, copies the parameters executes the con-
firmPayment() transaction with a higher gas price.

Recommendation

Rewrite the verification logic into two parts: one for cancellation verification and the
other for confirmation verification.

Page 11 of 13

D23E — Decentralized Intelligence AG ED
DECENTRALIZED INTELLIGENCE

23

0.6 Conclusion

In conclusion, this report has summarized features and potential security issues of the
DeliveryVersusPayment smart contract system, which leverages smart contract capa-
bilities to facilitate secure, transparent, and efficient asset exchanges within financial
transactions.

The core of the system, the DeliveryVersusPayment contracts, deliver a spectrum of
services to clients seeking to execute ERC20-standard token deliveries with utmost
security. The contracts also incorporate features allowing clients to cancel orders
before confirmation.

However, our manual auditing process has identified several potential threats, notably
one medium-severity vulnerability, one low-severity vulnerability, and one informa-
tional concern. The medium-severity vulnerability pertains to the potential risks in-
troduced by variable balance tokens and fee-on-transfer tokens, which may lead to
issues such as the locking of funds, loss of funds, and Denial of Service attacks. The
low-severity vulnerability highlights the possibility of trade order manipulation by a
malicious oracle due to insufficient verification mechanisms. The informational con-
cern points out the potential for front-running when the oracle is malicious. Both the
second and the third issue necessity a trustworthy oracle role.

To address these vulnerabilities and enhance the robustness of the DVP system, we
have provided detailed potential recommendations. These include implementing a
whitelist of approved tokens, adding balance checks to prevent issues with fee-on-
transfer tokens, modifying the trade hash verification process to ensure the integrity
of trade parameters, and rewriting the verification logic to mitigate front-running risks.

It is crucial to emphasize that while our fuzzer with the token leak oracle did not iden-
tify any vulnerabilities under the given test cases, we would recommend the purchase
of additional fuzzing oracles for a more in-depth investigation.

Page 12 of 13

Disclaimer

This report was created on: May 10, 2024. We hope you find this report informative and
useful. If you have any questions or need further clarification, please do not hesitate
to contact us at contact@d23e.ch.

The report is provided solely for informational purposes and should not be considered
as an endorsement, recommendation, or any form of legal, financial, or investment
advice.

The report is based on the code at the time and does not account for any updates,
modifications, or alterations to the code that may occur after the report date. The
code was assessed "as-is" and the findings represent the state of the code at the time
of the assessment.

Although every reasonable effort has been made to ensure the accuracy, complete-
ness, and fairness of the report and findings contained within the report, it is provided
on an "as-is" basis without any warranties, representations, or guarantees of any kind,
express or implied. This includes, but is not limited to, warranties of merchantabil-
ity, fitness for a particular purpose, non-infringement, accuracy, or the presence or
absence of errors, whether or not discoverable.

The authors, evaluators, and any associated parties disclaim all liability for any losses,
damages, costs, or expenses (including legal fees) arising directly or indirectly from
the use of or reliance on the report or its findings. This includes, but is not limited to,
any damage or loss caused by errors, omissions, inaccuracies, or any misleading or
out-of-date information.

The reader is solely responsible for any actions or decisions taken based on the in-
formation provided in this report. It is highly recommended that, where necessary,
appropriate professional advice is sought before making any decisions or taking any
actions relating to the smart contract code analyzed in this report.

We would like to reiterate that the report is no replacement for a real, comprehen-
sive audit involving significant manual labor. The report was performed mainly with
automated tools.

13

mailto:contact@d23e.ch

	Introduction
	Scope
	Excluded from scope

	Automated Findings
	Issues Detected

	Fuzzing Report
	Manual Auditing Finding Summary
	Detailed Results
	AssetAddress can be a variable balance token
	A malicious oracle can manipulate the trade order
	Front-running possibility when the oracle is malicious

	Conclusion

